186 research outputs found

    Dynamic interactions of a conserved enterotoxigenic Escherichia coli adhesin with intestinal mucins govern epithelium engagement and toxin delivery

    Get PDF
    At present, there is no vaccine for enterotoxigenic Escherichia coli (ETEC), an important cause of diarrheal illness. Nevertheless, recent microbial pathogenesis studies have identified a number of molecules produced by ETEC that contribute to its virulence and are novel antigenic targets to complement canonical vaccine approaches. EtpA is a secreted two-partner adhesin that is conserved within the ETEC pathovar. EtpA interacts with the tips of ETEC flagella to promote bacterial adhesion, toxin delivery, and intestinal colonization by forming molecular bridges between the bacteria and the epithelial surface. However, the nature of EtpA interactions with the intestinal epithelium remains poorly defined. Here, we demonstrate that EtpA interacts with glycans presented by transmembrane and secreted intestinal mucins at epithelial surfaces to facilitate pathogen-host interactions that culminate in toxin delivery. Moreover, we found that a major effector molecule of ETEC, the heat-labile enterotoxin (LT), may enhance these interactions by stimulating the production of the gel-forming mucin MUC2. Our studies suggest, however, that EtpA participates in complex and dynamic interactions between ETEC and the gastrointestinal mucosae in which host glycoproteins promote bacterial attachment while simultaneously limiting the epithelial engagement required for effective toxin delivery. Collectively, these data provide additional insight into the intricate nature of ETEC interactions with the intestinal epithelium that have potential implications for rational approaches to vaccine design

    Programmable Multi-Dose Intranasal Drug Delivery Device

    Get PDF
    An apparatus and method for the self-administration of a plurality of doses of an intranasal liquid pharmaceutical composition, including opioid analgesics, that includes a drug delivery device containing a plurality of sealed vials, each vial containing a predetermined volume of the pharmaceutical composition, a pump assembly for conveying the liquid pharmaceutical composition from the interior of the vial and discharging it as a nasal spray in response to manual activation by the patient, and programmable means for sequentially advancing a vial to the ready position after passage of a prescribed time interval following the last activation of the delivery device

    Linear Actuator Using Shape Memory Wire with Controller

    Get PDF
    A linear actuator is provided, comprising a housing defining an interior channel, a stop extending from the housing and displaceable relative to the housing, and at least one wire formed of a shape-memory alloy, the wire being attached at a first end to the stop and at a second end to the housing. When heated to a predetermined temperature, the wire applies a pulling force to the stop to cause the stop to slide in a first direction into the housing interior channel. A spring located in the housing interior channel applies a biasing force to the stop in a second direction counter to the first direction when the wire cools, thereby returning the stop to the unactuated position. A wire heater is provided, which may be an electrical source for resistive heating of the wire. Multiple actuators of the present invention may be configured in parallel to increase the force generated by the wires. In yet another embodiment the actuators of the invention may be arranged in a serial configuration for controlling a rotary or carousel dispenser

    System and Device for Characterizing Shape Memory Alloy Wires

    Get PDF
    Instruments and methods for measuring a property of a shape memory alloy are provided. The instrument includes a base plate, a non-contact movable mass, a force gauge, an actuator, a biasing spring, a heater for heating the shape memory alloy, and a non-contact displacement detector. The biasing spring and the shape memory alloy are disposed whereby a force applied thereby is applied substantially through a center of stiffness of the movable mass. The displacement detector measures a displacement of the movable mass in a colinear direction with a direction of movement of the movable mass and with a direction of the force applied by the biasing spring and the shape memory alloy. The linear motion stage comprises a housing and at least one guide bar, and wherein a calculated axial expansion of the guide bar is substantially equal to a calculated axial expansion of the base plate

    Salmonella Pathogenicity Island 2 Is Expressed Prior to Penetrating the Intestine

    Get PDF
    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes disease in mice that resembles human typhoid. Typhoid pathogenesis consists of distinct phases in the intestine and a subsequent systemic phase in which bacteria replicate in macrophages of the liver and spleen. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI-2) is a major virulence factor contributing to the systemic phase of typhoid pathogenesis. Understanding how pathogens regulate virulence mechanisms in response to the environment, including different host tissues, is key to our understanding of pathogenesis. A recombinase-based in vivo expression technology system was developed to assess SPI-2 expression during murine typhoid. SPI-2 expression was detectable at very early times in bacteria that were resident in the lumen of the ileum and was independent of active bacterial invasion of the epithelium. We also provide direct evidence for the regulation of SPI-2 by the Salmonella transcription factors ompR and ssrB in vivo. Together these results demonstrate that SPI-2 expression precedes penetration of the intestinal epithelium. This induction of expression precedes any documented SPI-2-dependent phases of typhoid and may be involved in preparing Salmonella to successfully resist the antimicrobial environment encountered within macrophages

    Microbiota Inhibit Epithelial Pathogen Adherence by Epigenetically Regulating C-Type Lectin Expression

    Get PDF
    Numerous bacterial pathogens infect the mammalian host by initially associating with epithelial cells that line the intestinal lumen. Recent work has revealed that commensal bacteria that reside in the intestine promote defense against pathogenic infection, however whether the microbiota direct host pathways that alter pathogen adherence is not well-understood. Here, by comparing germ-free mice, we identify that the microbiota decrease bacterial pathogen adherence and dampen epithelial expression of the cell surface glycoprotein C-type lectin 2e (Clec2e). Functional studies revealed that overexpression of this lectin promotes adherence of intestinal bacterial pathogens to mammalian cells. Interestingly, microbiota-sensitive downregulation of Clec2e corresponds with decreased histone acetylation of the Clec2e gene in intestinal epithelial cells. Histone deacetylation and transcriptional regulation of Clec2e depends on expression and recruitment of the histone deacetylase HDAC3. Thus, commensal bacteria epigenetically instruct epithelial cells to decrease expression of a C-type lectin that promotes pathogen adherence, revealing a novel mechanism for how the microbiota promote innate defense against infection

    TACI deficiency enhances antibody avidity and clearance of an intestinal pathogen

    Get PDF
    © 2014, The American Society for Clinical InvestigationThe transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) controls differentiation of long-lived plasma cells, and almost 10% of individuals with common variable immunodeficiency (CVID) express either the C104R or A181E variants of TACI. These variants impair TACI function, and TACI-deficient mice exhibit a CVID-like disease. However, 1%-2% of normal individuals harbor the C140R or A181E TACI variants and have no outward signs of CVID, and it is not clear why TACI deficiency in this group does not cause disease. Here, we determined that TACI-deficient mice have low baseline levels of Ig in the blood but retain the ability to mutate Ig-associated genes that encode antigen-specific antibodies. The antigen-specific antibodies in TACI-deficient mice were produced in bursts and had higher avidity than those of WT animals. Moreover, mice lacking TACI were able to clear Citrobacter rodentium, a model pathogen for severe human enteritis, more rapidly than did WT mice. These findings suggest that the high prevalence of TACI deficiency in humans might reflect enhanced host defense against enteritis, which is more severe in those with acquired or inherited immunodeficiencies.This work was funded by NIH grants P01 HL079067-01 and R37 HL5229

    Gut-derived bacterial flagellin induces beta-cell inflammation and dysfunction

    Get PDF
    Hyperglycemia and type 2 diabetes (T2D) are caused by failure of pancreatic beta cells. The role of the gut microbiota in T2D has been studied, but causal links remain enigmatic. Obese individuals with or without T2D were included from two independent Dutch cohorts. Human data were translated in vitro and in vivo by using pancreatic islets from C57BL6/J mice and by injecting flagellin into obese mice. Flagellin is part of the bacterial locomotor appendage flagellum, present in gut bacteria including Enterobacteriaceae, which we show to be more abundant in the gut of individuals with T2D. Subsequently, flagellin induces a pro-inflammatory response in pancreatic islets mediated by the Toll-like receptor (TLR)-5 expressed on resident islet macrophages. This inflammatory response is associated with beta-cell dysfunction, characterized by reduced insulin gene expression, impaired proinsulin processing and stress-induced insulin hypersecretion in vitro and in vivo in mice. We postulate that increased systemically disseminated flagellin in T2D is a contributing factor to beta-cell failure in time and represents a novel therapeutic target.Peer reviewe

    Epithelial p38α Controls Immune Cell Recruitment in the Colonic Mucosa

    Get PDF
    Intestinal epithelial cells (IECs) compose the first barrier against microorganisms in the gastrointestinal tract. Although the NF-κB pathway in IECs was recently shown to be essential for epithelial integrity and intestinal immune homeostasis, the roles of other inflammatory signaling pathways in immune responses in IECs are still largely unknown. Here we show that p38α in IECs is critical for chemokine expression, subsequent immune cell recruitment into the intestinal mucosa, and clearance of the infected pathogen. Mice with p38α deletion in IECs suffer from a sustained bacterial burden after inoculation with Citrobacter rodentium. These animals are normal in epithelial integrity and immune cell function, but fail to recruit CD4+ T cells into colonic mucosal lesions. The expression of chemokines in IECs is impaired, which appears to be responsible for the impaired T cell recruitment. Thus, p38α in IECs contributes to the host immune responses against enteric bacteria by the recruitment of immune cells
    corecore