814 research outputs found

    Quasiparticle Liquid in the Highly Overdoped Bi2212

    Full text link
    We present results from the study of a highly overdoped (OD) Bi2212 with a Tc=51T_{c}=51K using high resolution angle-resolved photoemission spectroscopy. The temperature dependent spectra near the (π,0\pi,0) point show the presence of the sharp peak well above TcT_{c}. From the nodal direction, we make comparison of the self-energy with the optimally doped and underdoped cuprates, and the Mo(110) surface state. We show that this OD cuprate appears to have properties that approach that of the Mo. Further analysis shows that the OD has a more kk-independent lineshape at the Fermi surface than the lower-doped cuprates. This allows for a realistic comparison of the nodal lifetime values to the experimental resistivity measurements via Boltzmann transport formulation. All these observations point to the validity of the quasiparticle picture for the OD even in the normal state within a certain energy and momentum range.Comment: 4 pages, 4 figure

    CDW, Superconductivity and Anomalous Metallic Behavior in 2D Transition Metal Dichalcogenides

    Full text link
    We propose a theory for quasi-two-dimensional transition metal dichalcogenides that provides a unified microscopic picture of the charge density wave (CDW) and superconducting phases. We show, based on the electron-phonon coupling and Fermi surface topology, that a CDW order parameter with six-fold symmetry and nodes (f-wave) gives a consistent description of the available experimental data. The elementary excitations in the CDW phase are Dirac electrons. The superconducting state has its origin on the attractive interaction mediated by phonons. The theory predicts strong deviations from Fermi liquid theory in the CDW phase.Comment: 4 pages, 3 figure

    Scaling of the superfluid density in high-temperature superconductors

    Full text link
    A scaling relation \rho_s \simeq 35\sigma_{dc}T_c has been observed in the copper-oxide superconductors, where \rho_s is the strength of the superconducting condensate, T_c is the critical temperature, and \sigma_{dc} is the normal-state dc conductivity close to T_c. This scaling relation is examined within the context of a clean and dirty-limit BCS superconductor. These limits are well established for an isotropic BCS gap 2\Delta and a normal-state scattering rate 1/\tau; in the clean limit 1/\tau \ll 2\Delta, and in the dirty limit 1/\tau > 2\Delta. The dirty limit may also be defined operationally as the regime where \rho_s varies with 1/\tau. It is shown that the scaling relation \rho_s \propto \sigma_{dc}T_c is the hallmark of a BCS system in the dirty-limit. While the gap in the copper-oxide superconductors is considered to be d-wave with nodes and a gap maximum \Delta_0, if 1/\tau > 2\Delta_0 then the dirty-limit case is preserved. The scaling relation implies that the copper-oxide superconductors are likely to be in the dirty limit, and that as a result the energy scale associated with the formation of the condensate is scaling linearly with T_c. The a-b planes and the c axis also follow the same scaling relation. It is observed that the scaling behavior for the dirty limit and the Josephson effect (assuming a BCS formalism) are essentially identical, suggesting that in some regime these two effects may be viewed as equivalent. This raises the possibility that electronic inhomogeneities in the copper-oxygen planes may play an important role in the nature of the superconductivity in the copper-oxide materials.Comment: 8 pages with 5 figures and 1 tabl

    Quasiparticle picture of high temperature superconductors in the frame of Fermi liquid with the fermion condensate

    Full text link
    A model of a Fermi liquid with the fermion condensate (FC) is applied to the consideration of quasiparticle excitations in high temperature superconductors, in their superconducting and normal states. Within our model the appearance of the fermion condensate presents a quantum phase transition, that separates the regions of normal and strongly correlated electron liquids. Beyond the phase transition point the quasiparticle system is divided into two subsystems, one containing normal quasiparticles and the other --- fermion condensate localized at the Fermi surface and characterized by almost dispersionless single-particle excitations. In the superconducting state the quasiparticle dispersion in systems with FC can be presented by two straight lines, characterized by effective masses MFCM^*_{FC} and MLM^*_L, respectively, and intersecting near the binding energy which is of the order of the superconducting gap. This same quasiparticle picture persists in the normal state, thus manifesting itself over a wide range of temperatures as new energy scales. Arguments are presented that fermion systems with FC have features of a quantum protectorate.Comment: 12 pages, Late

    Proposal for an Experiment to Test a Theory of High Temperature Superconductors

    Full text link
    A theory for the phenomena observed in Copper-Oxide based high temperature superconducting materials derives an elusive time-reversal and rotational symmetry breaking order parameter for the observed pseudogap phase ending at a quantum-critical point near the composition for the highest TcT_c. An experiment is proposed to observe such a symmetry breaking. It is shown that Angle-resolved Photoemission yields a current density which is different for left and right circularly polarized photons. The magnitude of the effect and its momentum dependence is estimated. Barring the presence of domains of the predicted phase an asymmetry of about 0.1 is predicted at low temperatures in moderately underdoped samples.Comment: latex, 2 figure

    Field-induced quantum critical route to a Fermi liquid in high-temperature superconductors

    Full text link
    In high transition temperature (T_c) superconductivity, charge doping is a natural tuning parameter that takes copper oxides from the antiferromagnet to the superconducting region. In the metallic state above T_c the standard Landau's Fermi-liquid theory of metals as typified by the temperature squared (T^2) dependence of resistivity appears to break down. Whether the origin of the non-Fermi-liquid behavior is related to physics specific to the cuprates is a fundamental question still under debate. We uncover a new transformation from the non-Fermi- to a standard Fermi-liquid state driven not by doping but by magnetic field in the overdoped high-T_c superconductor Tl_2Ba_2CuO_{6+x}. From the c-axis resistivity measured up to 45 T, we show that the Fermi-liquid features appear above a sufficiently high field which decreases linearly with temperature and lands at a quantum critical point near the superconductivity's upper critical field -- with the Fermi-liquid coefficient of the T^2 dependence showing a power-law diverging behavior on the approach to the critical point. This field-induced quantum criticality bears a striking resemblance to that in quasi-two dimensional heavy-Fermion superconductors, suggesting a common underlying spin-related physics in these superconductors with strong electron correlations.Comment: 6 pages, 4 figure

    Termination dependent topological surface states of the natural superlattice phase Bi4_4Se3_3

    Get PDF
    We describe the topological surface states of Bi4_4Se3_3, a compound in the infinitely adaptive Bi2_2-Bi2_2Se3_3 natural superlattice phase series, determined by a combination of experimental and theoretical methods. Two observable cleavage surfaces, terminating at Bi or Se, are characterized by angle resolved photoelectron spectroscopy and scanning tunneling microscopy, and modeled by ab-initio density functional theory calculations. Topological surface states are observed on both surfaces, but with markedly different dispersions and Kramers point energies. Bi4_4Se3_3 therefore represents the only known compound with different topological states on differently terminated surfaces.Comment: 5 figures references added Published in PRB: http://link.aps.org/doi/10.1103/PhysRevB.88.08110

    Considerations for nutrition support in critically ill children with COVID-19 and paediatric inflammatory multisystem syndrome temporally associated with COVID-19

    Get PDF
    The aim of this editorial is to provide an adaptation of nutrition support recommendations for the overall population of critically ill children, to provide further refined recommendations for critically ill children presenting with COVID-19 or paediatric hyper-inflammatory syndrome temporally associated with COVID-19. They are based on the ESPNIC-MEN section recommendations published in January 2020 (6) and Surviving Sepsis Campaign recommendations from February 2020 (7). These recommendations cover the acute, stable and rehabilitation phases (Table 1, Table 2)
    corecore