646 research outputs found

    Radiation Tolerance of CMOS Monolithic Active Pixel Sensors with Self-Biased Pixels

    Full text link
    CMOS Monolithic Active Pixel Sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the the dead time free, so-called self bias pixel. Moreover, we discuss radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mra

    Optimization of Tracking Performance of CMOS Monolithic Active Pixel Sensors

    No full text
    CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive solution for high precision tracking of minimum ionizing particles. In these devices, a thin, moderately doped, undepleted silicon layer is used as the active detector volume with the readout electronics implemented on top of it. Recently, a new MAPS prototype was fabricated using the AMS 0.35 mumum OPTO process, featuring a thick epitaxial layer. A systematic study of tracking performance of that prototype using high-energy particle beam is presented in this work. Noise performance, signal amplitude from minimum ionizing particles, detection efficiency, spurious hit suppression and spatial resolution are shown as a function of the readout pitch and the charge collecting diode size. A test array with a novel readout circuitry was also fabricated and tested. Each pixel circuit consists of a front-end voltage amplifier, capacitively coupled to the charge collecting diode, followed by two analog memory cells. This architecture implements an on-pixel correlated double sampling method, allowing for optimization of integration independently of full frame readout time and strongly reduces the pixel-to-pixel output signal dispersion. First measurements using this structure are also presented

    Large Surface X-Ray Pixel Detector

    No full text
    corecore