23 research outputs found

    Molecular characterization of an aggregation-prone variant of alpha-synuclein used to model synucleinopathies

    Get PDF
    The misfolding and aggregation of alpha-synuclein (aSyn) are thought to be central events in synucleinopathies. The physiological function of aSyn has been related to vesicle binding and trafficking, but the precise molecular mechanisms leading to aSyn pathogenicity are still obscure. In cell models, aSyn does not readily aggregate, even upon overexpression. Therefore, cellular models that enable the study of aSyn aggregation are essential tools for our understanding of the molecular mechanisms that govern such processes. Here, we investigated the structural features of SynT, an artificial variant of aSyn that has been widely used as a model of aggregation in mammalian cell systems, since it is more prone to aggregation than aSyn. Using Nuclear Magnetic Resonance (NMR) spectroscopy we performed a detailed structural characterization of SynT through a systematic comparison with normal, unmodified aSyn. Interestingly, we found that the conformations adopted by SynT resemble those described for the unmodified protein, demonstrating the usefulness of SynT as a model for aSyn aggregation. However, subtle differences were observed at the N-terminal region involving transient intra and/or intermolecular interactions that are known to regulate aSyn aggregation. Importantly, our results indicate that disturbances in the N-terminal region of SynT, and the consequent decrease in membrane binding of the modified protein, might contribute to the observed aggregation behavior of aSyn, and validate the use of SynT, one of the few models of aSyn aggregation in cultured cells

    Probing the interstitial calcium compartment

    No full text
    Calcium in interstitial fluids is a crucial ion pool for entry into cells through a plethora of calcium-permeable channels. It is also sensed actively by dedicated receptors. While the mechanisms of global calcium homeostasis and regulation in body fluids appear well understood, more efforts and new technology are needed to elucidate local calcium handling in the small and relatively isolated interstitial spaces between cells. Here we review current methodology for monitoring interstitial calcium and highlight the potential of new approaches for its study. In particular, new generations of high-performance low-affinity genetically encoded calcium indicators could allow imaging of calcium in relatively inaccessible intercellular structures in live tissues and organisms

    Structural basis behind the interaction of Zn2+ with the protein α-synuclein and the Aβ peptide: A comparative analysis.

    No full text
    α-Synuclein (AS) aggregation is associated to neurodegeneration in Parkinson's disease (PD). At the same time, alterations in metal ion homeostasis may play a pivotal role in the progression of AS amyloid assembly and the onset of PD. Elucidation of the structural basis directing AS–metal interactions and their effect on AS aggregation constitutes a key step towards understanding the role of metal ions in AS amyloid formation and neurodegeneration. Despite of the reported evidences that link Zn2+ with the pathophysiology of PD and the fact that this metal ion was shown to promote AS fibrillation in vitro, neither the structural characterization of the binding sites nor the identification of the amino acids involved in the interaction of Zn2+ with the protein AS has been carried out. By using NMR spectroscopy, we have addressed here unknown structural details related to the binding of Zn2+ to the protein AS through the design of site-directed and domain truncated mutants of AS. The binding of zinc to the Aβ peptide was also studied and discussed comparatively. Although the results of this study contribute to the understanding of the structural and molecular basis behind the acceleration of AS fibrillation mediated by Zn2+, the low affinity that characterizes the interaction of Zn2+ with AS contrasts strongly with the high-affinity features reported for the binding of this metal ion to other target proteins linked to human amylodosis such as Aβ peptide and the Islet Amyloid Polypeptide (IAPP), challenging the biological relevance of zinc interactions in the pathogenesis of PD

    Binding modes of phthalocyanines of amyloid β peptide and their effects on amyloid fibril formation

    Get PDF
    The inherent tendency of proteins to convert from their native states into amyloid aggregates is associated with a range of human disorders, including Alzheimer's and Parkinson's diseases. In that sense, the use of small molecules as probes for the structural and toxic mechanism related to amyloid aggregation has become an active area of research. Compared with other compounds, the structural and molecular basis behind the inhibitory interaction of phthalocyanine tetrasulfonate (PcTS) with proteins such as αS and tau has been well established, contributing to a better understanding of the amyloid aggregation process in these proteins. We present here the structural characterization of the binding of PcTS and its Cu(II) and Zn(II)-loaded forms to the amyloid β-peptide (Aβ) and the impact of these interactions on the peptide amyloid fibril assembly. Elucidation of the PcTS binding modes to Aβ40 revealed the involvement of specific aromatic and hydrophobic interactions in the formation of the Aβ40-PcTS complex, ascribed to a binding mode in which the planarity and hydrophobicity of the aromatic ring system in the phthalocyanine act as main structural determinants for the interaction. Our results demonstrated that formation of the Aβ40-PcTS complex does not interfere with the progression of the peptide toward the formation of amyloid fibrils. On the other hand, conjugation of Zn(II) but not Cu(II) at the center of the PcTS macrocyclic ring modified substantially the binding profile of this phthalocyanine to Aβ40 and became crucial to reverse the effects of metal-free PcTS on the fibril assembly of the peptide. Overall, our results provide a firm basis to understand the structural rules directing phthalocyanine-protein interactions and their implications on the amyloid fibril assembly of the target proteins; in particular, our results contradict the hypothesis that PcTS might have similar mechanisms of action in slowing the formation of a variety of pathological aggregates

    Site-specific copper-catalyzed oxidation of alpha-synuclein: Tightening the link between metal binding and protein oxidative damage in Parkinson's disease.

    No full text
    Amyloid aggregation of a-synuclein (AS) has been linked to the pathological effects associated with Parkinson's disease (PD). Cu-II binds specifically at the N-terminus of AS and triggers its aggregation. Site-specific Cu-I-catalyzed oxidation of AS has been proposed as a plausible mechanism for metal-enhanced AS amyloid formation. In this study, Cu-I binding to AS was probed by NMR spectroscopy, in combination with synthetic peptide models, site-directed mutagenesis, and C-terminal-truncated protein variants. Our results demonstrate that both Met residues in the motif (MDVFM5)-M-1 constitute key structural determinants for the high-affinity binding of Cu-I to the N-terminal region of AS. The replacement of one Met residue by Ile causes a dramatic decrease in the binding affinity for Cu-I, whereas the removal of both Met residues results in a complete lack of binding. Moreover, these Met residues can be oxidized rapidly after air exposure of the AS-Cu-I complex, whereas Met-116 and Met-127 in the C-terminal region remain unaffected. Met-1 displays higher susceptibility to oxidative damage compared to Met-5 because it is directly involved in both Cu-II and Cu-I coordination, resulting in closer exposure to the reactive oxygen species that may be generated by the redox cycling of copper. Our findings support a mechanism where the interaction of AS with copper ions leads to site-specific metal-catalyzed oxidation in the protein under physiologically relevant conditions. In light of recent biological findings, these results support a role for AS-copper interactions in neurodegeneration in PD

    Effect of repetitiveness on the immunogenicity and antigenicity of Trypanosoma cruzi FRA protein

    Get PDF
    Repetitive proteins (RP) of Trypanosoma cruzi are highly present in the parasite and are strongly recognized by sera from Chagas' disease patients. Flagelar Repetitive Antigen (FRA), which is expressed in all steps of the parasite life cycle, is the RP that displays the greatest number of aminoacids per repeat and has been indicated as one of the most suitable candidate for diagnostic test because of its high performance in immunoassays. Here we analyzed the influence of the number of repeats on the immunogenic and antigenic properties of the antigen. Recombinant proteins containing one, two, and four tandem repeats of FRA (FRA1, FRA2, and FRA4, respectively) were obtained and the immune response induced by an equal amount of repeats was evaluated in a mouse model. The reactivity of specific antibodies present in sera from patients naturally infected with T. cruzi was also assessed against FRA1, FRA2, and FRA4 proteins, and the relative avidity was analyzed. We determined that the number of repeats did not increase the humoral response against the antigen and this result was reproduced when the repeated motifs were alone or fused to a non-repetitive protein. By contrast, the binding affinity of specific human antibodies increases with the number of repeated motifs in FRA antigen. We then concluded that the high ability of FRA to be recognized by specific antibodies from infected individuals is mainly due to a favorable polyvalent interaction between the antigen and the antibodies. In accordance with experimental results, a 3D model was proposed and B epitope in FRA1, FRA2, and FRA4 were predicted

    Molecular characterization of an aggregation-prone variant of alpha-synuclein used to model synucleinopathies

    Get PDF
    The misfolding and aggregation of alpha-synuclein (aSyn) are thought to be central events in synucleinopathies. The physiological function of aSyn has been related to vesicle binding and trafficking, but the precise molecular mechanisms leading to aSyn pathogenicity are still obscure. In cell models, aSyn does not readily aggregate, even upon overexpression. Therefore, cellular models that enable the study of aSyn aggregation are essential tools for our understanding of the molecular mechanisms that govern such processes. Here, we investigated the structural features of SynT, an artificial variant of aSyn that has been widely used as a model of aggregation in mammalian cell systems, since it is more prone to aggregation than aSyn. Using Nuclear Magnetic Resonance (NMR) spectroscopy we performed a detailed structural characterization of SynT through a systematic comparison with normal, unmodified aSyn. Interestingly, we found that the conformations adopted by SynT resemble those described for the unmodified protein, demonstrating the usefulness of SynT as a model for aSyn aggregation. However, subtle differences were observed at the N-terminal region involving transient intra and/or intermolecular interactions that are known to regulate aSyn aggregation. Importantly, our results indicate that disturbances in the N-terminal region of SynT, and the consequent decrease in membrane binding of the modified protein, might contribute to the observed aggregation behavior of aSyn, and validate the use of SynT, one of the few models of aSyn aggregation in cultured cells
    corecore