58 research outputs found

    Domain structure of ultrathin ferromagnetic elements in the presence of Dzyaloshinskii-Moriya interaction

    Get PDF
    Recent advances in nanofabrication make it possible to produce multilayer nanostructures composed of ultrathin film materials with thickness down to a few monolayers of atoms and lateral extent of several tens of nanometers. At these scales, ferromagnetic materials begin to exhibit unusual properties, such as perpendicular magnetocrystalline anisotropy and antisymmetric exchange, also referred to as Dzyaloshinskii-Moriya interaction (DMI), because of the increased importance of interfacial effects. The presence of surface DMI has been demonstrated to fundamentally alter the structure of domain walls. Here we use the micromagnetic modeling framework to analyse the existence and structure of chiral domain walls, viewed as minimizers of a suitable micromagnetic energy functional. We explicitly construct the minimizers in the one-dimensional setting, both for the interior and edge walls, for a broad range of parameters. We then use the methods of {Γ\Gamma}-convergence to analyze the asymptotics of the two-dimensional mag- netization patterns in samples of large spatial extent in the presence of weak applied magnetic fields

    Diffusive transport in two-dimensional nematics

    Get PDF
    We discuss a dynamical theory for nematic liquid crystals describing the stage of evolution in which the hydrodynamic fluid motion has already equilibrated and the subsequent evolution proceeds via diffusive motion of the orientational degrees of freedom. This diffusion induces a slow motion of singularities of the order parameter field. Using asymptotic methods for gradient flows, we establish a relation between the Doi-Smoluchowski kinetic equation and vortex dynamics in two-dimensional systems. We also discuss moment closures for the kinetic equation and Landau-de Gennes-type free energy dissipation

    Limit shapes for Gibbs ensembles of partitions

    Get PDF
    We explicitly compute limit shapes for several grand canonical Gibbs ensembles of partitions of integers. These ensembles appear in models of aggregation and are also related to invariant measures of zero range and coagulation-fragmentation processes. We show, that all possible limit shapes for these ensembles fall into several distinct classes determined by the asymptotics of the internal energies of aggregates

    Domain wall motion in ferromagnetic nanowires driven by arbitrary time-dependent fields: An exact result

    Get PDF
    We address the dynamics of magnetic domain walls in ferromagnetic nanowires under the influence of external time-dependent magnetic fields. We report a new exact spatiotemporal solution of the Landau-Lifshitz-Gilbert equation for the case of soft ferromagnetic wires and nanostructures with uniaxial anisotropy. The solution holds for applied fields with arbitrary strength and time dependence. We further extend this solution to applied fields slowly varying in space and to multiple domain walls.Comment: 3 pages, 1 figur

    One-dimensional in-plane edge domain walls in ultrathin ferromagnetic films

    Get PDF
    We study existence and properties of one-dimensional edge domain walls in ultrathin ferromagnetic films with uniaxial in-plane magnetic anisotropy. In these materials, the magnetization vector is constrained to lie entirely in the film plane, with the preferred directions dictated by the magnetocrystalline easy axis. We consider magnetization profiles in the vicinity of a straight film edge oriented at an arbitrary angle with respect to the easy axis. To minimize the micromagnetic energy, these profiles form transition layers in which the magnetization vector rotates away from the direction of the easy axis to align with the film edge. We prove existence of edge domain walls as minimizers of the appropriate one-dimensional micromagnetic energy functional and show that they are classical solutions of the associated Euler-Lagrange equation with Dirichlet boundary condition at the edge. We also perform a numerical study of these one-dimensional domain walls and uncover further properties of these domain wall profiles

    Liquid crystal defects in the Landau-de Gennes theory in two dimensions-beyond the one-constant approximation

    Get PDF
    We consider the two-dimensional Landau-de Gennes energy with several elastic constants, subject to general kk-radially symmetric boundary conditions. We show that for generic elastic constants the critical points consistent with the symmetry of the boundary conditions exist only in the case k=2k=2. In this case we identify three types of radial profiles: with two, three of full five components and numerically investigate their minimality and stability depending on suitable parameters. We also numerically study the stability properties of the critical points of the Landau-de Gennes energy and capture the intricate dependence of various qualitative features of these solutions on the elastic constants and the physical regimes of the liquid crystal system
    • …
    corecore