
                          Muratov, C. B., & Slastikov, V. V. (2017). Domain structure of ultrathin
ferromagnetic elements in the presence of Dzyaloshinskii–Moriya
interaction. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 473(2197), [20160666]. DOI: 10.1098/rspa.2016.0666

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1098/rspa.2016.0666

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via The Royal Society
at https://doi.org/10.1098/rspa.2016.0666 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/83929521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1098/rspa.2016.0666
http://research-information.bristol.ac.uk/en/publications/domain-structure-of-ultrathin-ferromagnetic-elements-in-the-presence-of-dzyaloshinskiimoriya-interaction(a4e8d0b4-9935-4177-9a96-2a69bbca3bdb).html
http://research-information.bristol.ac.uk/en/publications/domain-structure-of-ultrathin-ferromagnetic-elements-in-the-presence-of-dzyaloshinskiimoriya-interaction(a4e8d0b4-9935-4177-9a96-2a69bbca3bdb).html


rspa.royalsocietypublishing.org

Research
Cite this article:Muratov CB, Slastikov VV.
2017 Domain structure of ultrathin
ferromagnetic elements in the presence of
Dzyaloshinskii–Moriya interaction. Proc. R.
Soc. A 473: 20160666.
http://dx.doi.org/10.1098/rspa.2016.0666

Received: 3 September 2016
Accepted: 5 December 2016

Subject Areas:
applied mathematics, mathematical physics,
nanotechnology

Keywords:
micromagnetics, Dzyaloshinskii–Moria
interaction, chiral domain walls, magnetic
skyrmions, gradient theory of phase
transitions,Γ -convergence

Author for correspondence:
Cyrill B. Muratov
e-mail: muratov@njit.edu

Domain structure of ultrathin
ferromagnetic elements in the
presence of
Dzyaloshinskii–Moriya
interaction
Cyrill B. Muratov1 and Valeriy V. Slastikov2

1Department of Mathematical Sciences, New Jersey Institute of
Technology, Newark, NJ 07102, USA
2School of Mathematics, University of Bristol, Bristol BS8 1TW, UK

CBM, 0000-0002-3337-6165

Recent advances in nanofabrication make it possible
to produce multilayer nanostructures composed of
ultrathin film materials with thickness down to a few
monolayers of atoms and lateral extent of several
tens of nanometers. At these scales, ferromagnetic
materials begin to exhibit unusual properties, such
as perpendicular magnetocrystalline anisotropy
and antisymmetric exchange, also referred to as
Dzyaloshinskii–Moriya interaction (DMI), because of
the increased importance of interfacial effects. The
presence of surface DMI has been demonstrated to
fundamentally alter the structure of domain walls.
Here we use the micromagnetic modelling framework
to analyse the existence and structure of chiral
domain walls, viewed as minimizers of a suitable
micromagnetic energy functional. We explicitly
construct the minimizers in the one-dimensional
setting, both for the interior and edge walls, for a
broad range of parameters. We then use the methods
of Γ -convergence to analyse the asymptotics of the
two-dimensional magnetization patterns in samples
of large spatial extent in the presence of weak applied
magnetic fields.

1. Introduction
The exploding amount of today’s digital data calls
for revolutionary new high-density, fast and long-term

2017 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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information storage solutions. Spintronics is one among the emerging fields of nanotechnology
offering a great promise for information technologies, whereby information is carried and
processed, using the electron spin rather than its electric charge [1–4]. It brings about many
opportunities for creating the next generation of devices combining spin-dependent effects with
conventional charge-based electronics. Despite being a relatively new field of applied physics,
it has already firmly established its presence in everyday life through the development of
new magnetic storage devices. The discovery of giant magnetoresistance (GMR), for which A.
Fert and P. Grünberg were awarded the 2007 Nobel Prize in Physics, allowed an ability to
‘read’ the magnetization states of a ferromagnet through electric resistance measurements. This
effect has been used in GMR-based spin valves, which transformed magnetic hard-disk drive
technology, leading to increases in storage density by several orders of magnitude. Yet, the GMR
magnetic storage technology has already been superseded by novel spin-dependent devices
based on the effect of tunnelling magnetoresistance, another exciting development in the field
of spintronics [4].

Recent discoveries of new physical phenomena that become prominent at the nanoscale open
up a possibility of unprecedented data storage densities and read/write speeds. These include
spin transfer torque (STT), chiral domain walls and magnetic skyrmions, spin Hall effect, spin
Seebeck effect, electric field control of the magnetic properties, etc. (e.g. [4–10]). The ability
to manipulate the magnetization using electric currents suggests novel designs for magnetic
memory. One popular concept is the so-called racetrack memory [4,11], which uses a two-
dimensional array of parallel nanowires where magnetic domain ‘bits’ may be read, moved and
written through an application of a spin current. Another promising type of memory and logic
device is based on storing and manipulating the data bits, using magnetic skyrmions, rather than
magnetic domain walls. The existence of magnetic skyrmions was predicted theoretically more
than 25 years ago [12,13], but their experimental observations are much more recent [7,14,15]. The
topological stability, small size and extremely low currents and fields required to move magnetic
skyrmions make them natural candidates for the use in spintronic memory and logic devices
[6,15,16].

A successful design of novel spintronic devices that make use of magnetic domain walls or
skyrmions is strongly dependent on a deep theoretical understanding of static and dynamic
behaviours of the magnetization in magnetic nanostructures. The manipulation and control of
magnetic domain walls and topologically protected states (e.g. magnetic vortices and skyrmions)
in ferromagnetic nanostructures has been the subject of extensive experimental and theoretical
research (e.g. [8,17–22]; this list is certainly far from complete). Recent advances in nanofabrication
techniques [23] have led to the production of ultrathin films with thickness down to several
atomic layers and a lateral extent down to tens of nanometers. These ultrathin magnetic
films and multilayer structures often exhibit unusual magnetic properties, attributed to an
increased importance of interfacial effects. The most important features of these ultrathin
magnetic structures include the appearance of perpendicular magnetic anisotropy [24,25] and
the Dzyaloshinskii–Moriya interaction (DMI) [26,27]. The latter is closely related to reflection
symmetry breaking in such films and leads to emergence of magnetization chirality [18,28,29].

The experimental discovery of the symmetry breaking DMI in ferromagnetic multilayers has
generated a lot of interest in the physics community [14,30,31]. There has been a lot of work
focusing on the influence of DMI on magnetization configurations within a ferromagnetic sample
[18,19,30]. One of the interesting features of DMI is its influence on the profile and the dynamic
properties of domain walls [8,18,19,32]. In addition, it is well-known that DMI may be responsible
for formation of magnetic skyrmions—topologically protected states with a quantized topological
degree observed in ultrathin films [7,33]. DMI also plays a crucial role in defining the orientation
of the domain walls and chiral behaviour of the magnetization inside the wall, leading to the
formation of a new type of chiral domain walls, also referred to as Dzyaloshinskii walls [18], having
rather different properties than the conventional Bloch and Neel walls [34]. For an illustration of
chiral domain walls observed experimentally and numerically, see figure 1. In a recent theoretical
work [19], it was reported that the interplay between DMI and the boundary of an ultrathin
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Figure 1. Experimental and numerical observations of chiral domain walls in ultrathin ferromagnetic films in the presence of
DMI. (a) The schematics of the multilayer structure (ML, monolayer). (b) A colourmap of the magnetization exhibiting chiral
domain walls. (c) A histogram of the in-plane magnetization orientation angle relative to the in-plane normal to the domain
wall showing a preferred rotation direction. (d) A comparison to the result of a Monte Carlo simulation of a discrete spin model.
In (b), grey indicates the domains with the magnetization up, black indicates the domains with the magnetization down and
the rest of the colours correspond to the directions of the in-plane component, as shown in the colour-wheel. Adapted from [8],
with permission; see that reference for further details. (Online version in colour.)

ferromagnetic sample is responsible for creating another type of domain wall—chiral edge domain
walls. These walls play a crucial role in producing new types of magnetization patterns inside
a ferromagnet. For instance, in the presence of a transverse applied field, chiral edge domain
walls provide a mechanism for tilting of an interior domain wall in a ferromagnetic strip [22,35].
Moreover, they also significantly modify the dynamic behaviour of the interior domain wall
under the action of current and an applied field [18].

In this paper, we study chiral domain walls in ultrathin ferromagnetic films, using rigorous
analytical methods within the variational framework of micromagnetics. Our goal is to
understand the formation of chiral interior domain walls and chiral edge domain walls, viewed
as local or global energy minimizing configurations of the magnetization, in samples with
perpendicular magnetocrystalline anisotropy in the presence of surface DMI and weak applied
magnetic fields. The multi-scale nature of the micromagnetic energy allows for a variety of distinct
regimes characterized by different relations between the material and geometric parameters, and
makes its investigation a very challenging mathematical problem. Many of these regimes have
been investigated analytically, using modern techniques of calculus of variations in the context of
various ferromagnetics nanostructures (e.g. [36]).

Our starting point is a reduced two-dimensional micromagnetic energy, in which the stray
field contributes only a local shape anisotropy term to the leading order (see (2.2)). This energy
gives rise to a non-convex vectorial variational problem, with a non-trivial interplay between
the boundary and the interior of the domain due to the DMI term. We seek to understand the
formation and structure of the domain walls—transition layers between constant magnetization
states—that correspond to minimizers of the micromagnetic energy. The framework for this
analysis is provided by the variational methods of the gradient theory of phase transitions [37].
These types of problems have been extensively studied in the mathematical community in both
scalar [37–40] and vectorial [41,42] settings. The non-trivial influence of the boundary within the
gradient theory of phase transitions was investigated in [38,40].

We begin by investigating the one-dimensional problems on the infinite and semi-infinite
domains. Here we provide a complete analytical solution for the global energy minimizers of
these one-dimensional problems, see theorems 3.1 and 3.4, respectively. Our main tool is a careful
analysis of the case of equality in the vectorial Modica–Mortola type lower bound for the energy
of one-dimensional magnetization configurations. Our analysis yields explicit profiles for one-
dimensional chiral interior and edge domain walls. These optimal profiles are used later on in
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x)| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m‖, preferring to be equal to ±1, and the in-plane component
m⊥, preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m‖ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

‖. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

‖ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness d occupying the spatial domain Ω ×
(0, d) ⊂ R

3, where Ω ⊆ R
2 is a two-dimensional domain specifying the shape of the ferromagnetic

element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x, y, z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]

E(M) = A

M2
s

∫
Ω×(0,d)

|∇M|2 d3r + K

M2
s

∫
Ω×(0,d)

|M⊥|2 d3r − μ0

∫
Ω×(0,d)

M · H d3r

+ μ0

∫
R3

∫
R3

∇ · M(r)∇ · M(r′)
8π |r − r′| d3r d3r′ + Dd

M2
s

∫
Ω

(M̄‖∇ · M̄⊥ − M̄⊥ · ∇M̄‖) d2r. (2.1)

Here we wrote M = (M⊥, M‖), where we defined M⊥ ∈ R
2 and M‖ ∈ R to be the components of the

magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R

3, μ0 is the permeability of vacuum,
H = H(x, y, z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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layer and a non-magnetic material and should, therefore, enter as a boundary term in the full
three-dimensional theory.

In the above framework, the equilibrium magnetization configurations in the ferromagnetic
sample correspond to either global or local minimizers of a non-local, non-convex energy
functional in (2.1). This energy includes several terms, in order of appearance: the exchange
term, which prefers constant magnetization configurations; the magnetocrystalline anisotropy,
which favours out-of-plane magnetization configurations; the Zeeman, or applied field term,
which prefers magnetizations aligned with the external field; the magnetostatic term, which
prefers divergence-free configurations; and the surface DMI term, which favours chiral symmetry
breaking. The origin of the latter is the antisymmetric exchange mediated by the spin-orbit
coupling in the conduction band of a heavy metal at the ferromagnet–metal interface [28,43,44].

The variational problem associated with (2.1) poses a significant challenge for analysis.
Therefore, in the following, we introduce a simplified version of the energy in (2.1) that is

suitable for ultrathin ferromagnetic films of thickness d � �ex =
√

2A/(μ0M2
s ), where �ex is the

material exchange length. In this case, a two-dimensional model is appropriate in which the stray
field energy can be modelled by a local shape anisotropy term (e.g. [45]; for a more thorough
mathematical discussion of the stray field effect in ultrathin films with perpendicular anisotropy,
see [46]). Measuring the lengths in the units of �ex and the energy in the units of Ad, we can
rewrite the energy associated with the magnetization configuration M(x, y, z) = Msm(x, y), where
m : Ω → S

2, as

E(m) =
∫
Ω

{|∇m|2 + (Q − 1)|m⊥|2 − 2h‖m‖ − 2h⊥ · m⊥ + κ(m‖∇ · m⊥ − m⊥ · ∇m‖)} d2r, (2.2)

where we defined m⊥ ∈ R
2 and m‖ ∈ R to be the respective components of the unit magnetization

vector m and introduced the dimensionless quality factor Q and the dimensionless DMI
strength κ :

Q = 2K

μ0M2
s

, κ = D

√
2

μ0M2
s A

, (2.3)

where D is the DMI constant [18]. In (2.2), we also introduced a dimensionless applied magnetic
field h = (h⊥, h‖) = H/Ms, with h⊥ ∈ R

2 and h‖ ∈ R.
We are interested in the regime in which the film favours magnetizations that are normal to

the film plane, i.e. when Q > 1. Also, as the energy is invariant with respect to the transformation

κ → −κ , m⊥ → −m⊥ and h⊥ → −h⊥, (2.4)

without loss of generality, we can assume κ to be positive.

3. The problem in one dimension
We begin by considering an idealized situation in which the ferromagnetic film occupies either
the whole plane or a half-plane, which leads to two basic types of domain walls considered below
(figure 2). These are the magnetization configurations that vary in one direction only. In the case
of the half-plane, the magnetization is also assumed to vary in the direction normal to the film
edge. Throughout this section, we set the applied magnetic field h to zero.

(a) Interior wall
Consider first the whole space situation, in which case we may assume that

Ω = {(x, y) ∈ R
2 : x ∈ R, 0 < y < 1}, (3.1)
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Figure 2. Two types of one-dimensional domain walls due to DMI: (a) interior wall and (b) edge wall. In the upper panels, θ
stands for the angle betweenm and the z-axis. The vectorm rotates in the xz-plane (lower panels).

with periodic boundary conditions at y = 0 and y = 1. We then take m to be a one-dimensional
profile, i.e. m = m(x). Then we may write the energy associated with m in the form

E(m) =
∫∞

−∞
{|m′|2 + (Q − 1)|m⊥|2 + κ(m‖(x̂ · m⊥)′ − (x̂ · m⊥)m′

‖)} dx, (3.2)

where primes denote the derivative with respect to the x variable and x̂ is the unit vector in the
direction of the x-axis. We are interested in the global energy minimizers of the energy in (3.2) that
obey the following conditions at infinity:

lim
x→±∞ m‖(x) = ±1 and lim

x→±∞ m⊥(x) = 0. (3.3)

On heuristic grounds, one expects that the optimal domain wall profile has the form of the
Dzyaloshinskii wall [18]. Namely, one expects that in the domain wall the magnetization rotates
around the direction of the y-axis. Hence, introducing an ansatz

m = (sin θ , 0, cos θ ), (3.4)

one can rewrite the energy in (3.2) as [19]

E(m) =
∫∞

−∞
{|θ ′|2 + (Q − 1) sin2 θ + κθ ′} dx. (3.5)

Observe, however, that a priori the energy in (3.5) is not well defined in the natural class of
θ ∈ H1

loc(R), as the last term in the energy is not sign definite and does not necessarily make sense
as the Lebesgue integral on the whole real line. This fact is closely related to the chiral nature
of DMI, favouring oscillations of the magnetization vector. A simple counterexample, in which
the first two terms of the energy in (3.5) are well defined, while the last one is not, is given by
the function θ (x) = π/2 − Si(x), where Si(x) = ∫x

0 t−1 sin t dt is the sine integral function. It is also
worth noting that if one were to define the energy in (3.5) as the limit of the energies on large finite
domains, then its minimum value would be strictly less than that obtained from the integral on
the whole real line due to the presence of edge domain walls [19] (see also §3b for further details).

To fix the issue above, one needs to assume that θ ′ ∈ L1(R), which introduces a bound on the
total variation of θ on R. This, in turn, implies that the limit of θ (x) as x → ±∞ exists, and the
last term in (3.5) becomes a boundary term. Furthermore, in order for the energy to be bounded
the limits of θ (x) at infinity must be integer multiples of π , and without loss of generality we
may assume

lim
x→−∞ θ (x) = πn and lim

x→+∞ θ (x) = 0, n ∈ Z. (3.6)
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The energy then becomes

E(m) =
∫∞

−∞
{|θ ′|2 + (Q − 1) sin2 θ} dx − κπn, (3.7)

for θ ∈ H1
loc(R) with θ ′ ∈ L1(R) and θ obeying (3.6).

It is easy to see that the energy in (3.7) is uniquely minimized in the above class if and only if
n = 1 and κ < κc, where

κc = 4
√

Q − 1
π

. (3.8)

In this case, the optimal profile is, up to translations, given by [19]

θ (x) = 2 arctan e−x
√

Q−1, (3.9)

and the wall energy is given by

σwall = 4
√

Q − 1 − πκ > 0. (3.10)

Indeed, minimizers of (3.7) with n = ±1 among all admissible θ are well known to exist due to
the good coercivity and lower semicontinuity properties of those terms (for technical details in a
related problem, see [47]). The profile in (3.9) is then the unique solution, up to translations and
sign, of the Euler–Lagrange equation associated with (3.7) satisfying (3.6). At the same time, for
|n| ≥ 2 the energy is easily seen to satisfy E(θ ) ≥ |n|σwall. Hence, by inspection the minimizer with
n = +1 corresponds to the global minimizer for all n = 0, with the sign of n corresponding to the
wall chirality imparted by DMI.

We remark that, in contrast with the above situation, the problem associated with (3.2) does
not admit minimizers for κ > κc, as in this case the energy is not bounded below and favours
helical structures [19].

The following theorem establishes existence and uniqueness of the minimizers of the one-
dimensional domain wall energy in (3.2) among all profiles satisfying (3.3) without assuming the
ansatz in (3.4). In view of the discussion above, an appropriate admissible class for the energy is
given by

A= {m ∈ H1
loc(R; S2) : m′ ∈ L1(R; R3)}. (3.11)

The theorem below confirms the expectation that the domain wall profile is given by (3.4) and
(3.9) for all κ below a critical value, although the latter turns out to be slightly lower than the
expected threshold value of κ = κc given by (3.8).

Theorem 3.1. Let 0 < κ <
√

Q − 1. Then there exists a unique, up to translations, minimizer m ∈A of
(3.2) satisfying (3.3). The minimizer m has the form in (3.4) with θ given by (3.9), and the minimal energy
is given by σwall from (3.10).

Proof. The proof proceeds by showing directly that the profile given by (3.4) and (3.9) is the
unique minimizer via establishing a sharp lower bound for the energy. Assume without loss of
generality that E(m) < +∞. Then by dominated convergence theorem, we have

E(m) =
∫∞

−∞
(|m′|2 + (Q − 1)|m⊥|2) dx + κ lim

R→∞

∫R

−R
(m‖(x̂ · m⊥)′ − (x̂ · m⊥)m′

‖) dx, (3.12)

and |m⊥(x)| → 0 as x → ±∞ [48, Corollary 8.9]. Using integration by parts [48, Corollary 8.10],
the last integral may be rewritten as

∫R

−R
(m‖(x̂ · m⊥)′ − (x̂ · m⊥)m′

‖) dx = (x̂ · m⊥(x))m‖(x)|R−R − 2
∫R

−R
(x̂ · m⊥)m′

‖ dx. (3.13)

Therefore, passing to the limit we obtain that

E(m) =
∫∞

−∞
(|m′|2 + (Q − 1)|m⊥|2 − 2κ(x̂ · m⊥)m′

‖) dx. (3.14)
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We now trivially estimate the DMI term from below to obtain

E(m) ≥
∫∞

−∞
(|m′|2 + (Q − 1)|m⊥|2 − 2κ|m⊥| |m′

‖|) dx. (3.15)

Next, we use the standard trick [49] to estimate the exchange energy by the term involving only
|m′

‖|. In the following, we spell out the details of the argument, paying special attention to the
optimality of the obtained estimates. We start by applying the weak chain rule [48, Proposition
9.5] to the identity |m⊥|2 + m2

‖ = 1. This yields

m2
‖|m′

‖|2 = |m⊥ · m′
⊥|2 ≤ |m⊥|2|m′

⊥|2 for a.e. x ∈ R. (3.16)

Therefore, for a.e. x ∈ R such that |m‖| < 1, we can write

m2
‖|m′

‖|2
1 − m2

‖
≤ |m′

⊥|2. (3.17)

Thus ∫∞

−∞
|m′|2 dx =

∫∞

−∞
(|m′

⊥|2 + |m′
‖|2) dx ≥

∫
{|m‖|<1}

|m′
‖|2

1 − m2
‖

dx. (3.18)

Writing the lower bound for the energy in terms of m‖, with the help of (3.15) and (3.18) we
obtain

E(m) ≥
∫
{|m‖|<1}

( |m′
‖|2

1 − m2
‖

+ (Q − 1)(1 − m2
‖)

)
dx − 2κ

∫∞

−∞

√
1 − m2

‖|m′
‖| dx. (3.19)

This inequality may be rewritten in the following Modica–Mortola type form

E(m) ≥ 2
∫∞

−∞
(
√

Q − 1 − κ

√
1 − m2

‖)|m′
‖| dx

+
∫
{|m‖|<1}

⎛
⎝ |m′

‖|√
1 − m2

‖
−
√

(Q − 1)(1 − m2
‖)

⎞
⎠

2

dx, (3.20)

where we extended the domain of integration in the first term to the whole real line in view of the
fact that by (3.16) we have m′

‖ = 0 whenever |m‖| = 1.
We now turn to showing that the energy is minimized by the profile given by (3.4) with θ given

by (3.9). Indeed, from (3.20) we have for any R > 0

E(m) ≥ 2
∫R

−R
(
√

Q − 1 − κ

√
1 − m2

‖)|m′
‖| dx

≥ 2
∫R

−R
(
√

Q − 1 − κ

√
1 − m2

‖)m′
‖ dx

= {2m‖(x)
√

Q − 1 − κ(m‖(x)
√

1 − m2
‖(x) + arcsin(m‖(x)))}|R−R, (3.21)

where we used the assumption that κ <
√

Q − 1 to go from the first to the second line. Finally,
passing to the limit as R → ∞ and using (3.3), we obtain

E(m) ≥ σwall, (3.22)

where σwall is defined in (3.10). At the same time, by the computation at the beginning of this
section the inequality above is an equality when m is given by (3.4) with θ from (3.9).

It remains to prove that the profile given by (3.4) with θ from (3.9) is the unique, up to
translations, minimizer of the energy that satisfies (3.3). Without loss of generality, we may
assume that m‖(0) = 0, in view of the continuity of m‖(x) and (3.3). As the minimal value of
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the energy is attained by dropping the last term in (3.20) and replacing |m′
‖| with m′

‖, we have
m′

‖(x) ≥ 0 for a.e. x ∈ R, and m‖ satisfies

m′
‖ =

√
Q − 1(1 − m2

‖) for a.e. x ∈ I, (3.23)

where I = (a, b) with −∞ ≤ a < 0 < b ≤ ∞. As the right-hand side of (3.23) is continuous, m‖
is the unique classical solution of (3.23) that satisfies m‖(0) = 0, which is explicitly m‖(x) =
tanh(x

√
Q − 1). Lastly, the inequality in (3.16) becomes equality when m′

⊥ is parallel to m⊥ and,
hence, m⊥ = gb for some constant vector b ∈ R

2 and a scalar function g : R → [−1, 1]. In turn,
to make an inequality in (3.15) an equality, one needs to choose b = x̂ and g ≥ 0. In view of the
unit length constraint for |m|, this translates into m⊥ = x̂ sech2(x

√
Q − 1). The obtained profile

m = (m⊥, m‖) is then precisely the one given by (3.4) with θ from (3.9). �

We note that the arguments in the proof of theorem 3.1 do not carry over to the range
√

Q − 1 <

κ ≤ κc, as in this range we can no longer reduce the energy by passing to the configurations in
the form given by (3.4). Nevertheless, an inspection of the proof shows that the statement of
theorem 3.1 remains true for all m = (m⊥, m‖) such that m‖(x) is a non-decreasing function of x.
Hence, we have the following result.

Theorem 3.2. For any κ > 0, there exists a unique, up to translations, minimizer of (3.2) among all
m = (m⊥, m‖) ∈A satisfying (3.3) and m′

‖ ≥ 0. The minimizer m has the form in (3.4) with θ given by
(3.9), and the minimal energy is given by σwall from (3.10).

Remark 3.3. We point out that due to the presence of the edge domain walls (see the following
subsection) the minimizers of the energy in (2.2) in the form of a Dzyaloshinskii wall on a
strip Ω = R × (0, L) are not one dimensional for any L > 0. Nevertheless, if one assumes periodic
boundary conditions instead of the natural boundary conditions at the edges of the strip, an
examination of the proof of theorem 3.1 shows that the global minimizer is still given by (3.4)
and (3.9) in this case.

(b) Edge wall
Consider now the half-plane situation, in which case we may assume that

Ω = {(x, y) ∈ R
2 : x > 0, 0 < y < 1}, (3.24)

with periodic boundary conditions at y = 0 and y = 1. Taking m to be a one-dimensional profile,
i.e. m = m(x), we write

E(m) =
∫∞

0
{|m′|2 + (Q − 1)|m⊥|2 + κ(m‖(x̂ · m⊥)′ − (x̂ · m⊥)m′

‖)} dx, (3.25)

where, as before, x̂ is the unit vector in the direction of the x-axis. Once again, in order for this
energy to be bounded, we must have |m⊥(x)| → 0 as x → ∞. Hence, in view of the symmetry

m⊥ → −m⊥ and m‖ → −m‖, (3.26)

without loss of generality we may assume that

lim
x→∞ m‖(x) = 1. (3.27)

Note, however, that the value of m(0) is not fixed and needs to be determined for the optimal
domain wall profile at the material edge. Such edge domains walls were first discussed in [19]
(for closely related objects in bulk helimagnets, see also [50,51]).

As for κ > κc, where κc is given by (3.8), the energy favours helical structures [19] and, hence,
is not bounded below on the semi-infinite interval as well as on the whole line, throughout the
rest of this section we assume that κ < κc. Assuming also the ansatz from (3.4) and arguing as in
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the previous subsection, for θ ∈ H1(R+) with θ ′ ∈ L1(R+) we may write the energy in (3.25) as

E(m) =
∫∞

0
{|θ ′|2 + (Q − 1) sin2 θ} dx − κθ (0), (3.28)

which is easily seen to be minimized at fixed θ (0) = θ0 ∈ (0, π ) by

θ (x) = 2 arctan e(x0−x)
√

Q−1, x0 = ln tan(θ0/2)√
Q − 1

. (3.29)

Indeed, using the Modica–Mortola trick [37], we rewrite the energy in (3.28) as

E(m) = 2
√

Q − 1
∫∞

0
| sin θ | |θ ′| dx +

∫∞

0
(|θ ′| −

√
Q − 1| sin θ |)2 dx − κθ0

≥ −
∫∞

0
(2
√

Q − 1| sin θ | − κ)θ ′ dx =
∫ θ0

0
(2
√

Q − 1| sin θ | − κ) dθ . (3.30)

In particular, the inequality above becomes an equality when θ is given by (3.29).
We now show that there exists a unique value of θ0 = θ∗

0 ∈ (0, π ) for which the function from
(3.29) yields the absolute minimum of the energy in (3.28) for κ < κc. Denoting the right-hand side
in (3.30) by F(θ0), we observe that F(0) = 0, F′(0) < 0 and F(θ0) = F(θ0 − π ) + σwall, where σwall > 0
is given by (3.10), for all θ0 ≥ π . Therefore, for θ0 ≥ 0 it is enough to consider the values of θ0 ∈
(0, π ), for which we have explicitly

F(θ0) = 2
√

Q − 1(1 − cos θ0) − κθ0. (3.31)

A simple computation then shows that for θ0 ≥ 0 the function F(θ0) is uniquely minimized by

θ∗
0 = arcsin

(
κ

2
√

Q − 1

)
, (3.32)

and the minimal value of F(θ0) is given by

σedge = 2
√

Q − 1

⎛
⎝1 −

√
1 − κ2

4(Q − 1)

⎞
⎠− κ arcsin

(
κ

2
√

Q − 1

)
< 0. (3.33)

In fact, this is also an absolute lower bound for E(m) in (3.28), as for θ0 < 0 the energy remains
positive. Furthermore, as θ∗

0 ∈ (0, π ), this minimum value is attained by the profile in (3.29) with
θ0 = θ∗

0 . Interestingly, we find that θ∗
0 ∈ (0, arcsin(2/π )), spanning the range from 0◦ at κ = 0 to

about 39.5◦ for κ = κc. Thus, the global minimizer of the energy in (3.25) among all profiles
satisfying (3.4) has the form of an edge domain wall whose profile is given by (3.29), up to a
sign, with an optimal value of θ at the edge.

We now prove, once again, that this picture remains true without the ansatz in (3.4) for a
slightly smaller range of the values of κ < κc. The appropriate admissible class for the energy in
(3.25) is now

A+ = {m ∈ H1
loc(R+; S2) : m′ ∈ L1(R+; R3)}. (3.34)

Theorem 3.4. Let 0 < κ <
√

Q − 1. Then there exists a unique minimizer m ∈A+ of (3.25) satisfying
(3.27). The minimizer m has the form in (3.4) with θ given by (3.29) and θ0 = θ∗

0 from (3.32), and the
minimal energy is given by σedge from (3.33).

Proof. The proof proceeds exactly as in the case of theorem 3.1, except that there is now an extra
contribution from the boundary of the domain at x = 0. Namely, instead of (3.14) we obtain

E(m) =
∫∞

0
(|m′|2 + (Q − 1)|m⊥|2 − 2κ(x̂ · m⊥)m′

‖) dx − κm‖(0)(x̂ · m⊥(0)). (3.35)

Estimating both terms coming from DMI from below as

E(m) ≥
∫∞

0
(|m′|2 + (Q − 1)|m⊥|2 − 2κ|m⊥| |m′

‖|) dx − κ|m‖(0)| |m⊥(0)|, (3.36)
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and retracing the steps in the proof of theorem 3.1, we obtain

E(m) ≥ 2
∫∞

0
(
√

Q − 1 − κ

√
1 − m2

‖)|m′
‖| dx − κ|m‖(0)|

√
1 − m2

‖(0)

+
∫
{|m‖|<1}

⎛
⎝ |m′

‖|√
1 − m2

‖
−
√

(Q − 1)(1 − m2
‖)

⎞
⎠

2

dx. (3.37)

With the help of the identity |m′
‖| = | |m‖|′| [52, Theorem 6.17] and our assumption on κ , we can

further estimate the right-hand side in (3.37) from below as

E(m) ≥ 2
∫R

0
(
√

Q − 1 − κ

√
1 − m2

‖)|m′
‖| dx − κ|m‖(0)|

√
1 − m2

‖(0)

≥ 2
∫R

0
(
√

Q − 1 − κ

√
1 − m2

‖)|m‖|′ dx − κ|m‖(0)|
√

1 − m2
‖(0)

= {2|m‖(x)|
√

Q − 1 − κ(|m‖(x)|
√

1 − m2
‖(x) + arcsin(|m‖(x)|))}|R0

− κ|m‖(0)|
√

1 − m2
‖(0). (3.38)

Simplifying the expression above and passing to the limit, we arrive at

E(m) ≥ 2
√

Q − 1(1 − |m‖(0)|) − κ arccos |m‖(0)|. (3.39)

However, the right-hand side of (3.39) is nothing but F(arccos |m‖(0)|), where F is given by (3.31).
Thus, E(m) ≥ σedge, and equality holds for the profile given by (3.4) and (3.29). Furthermore, as in
the case of theorem 3.1, the inequality above is strict for any other wall profile. This concludes the
proof. �

Remark 3.5. According to theorem 3.4, the magnetization vector in the edge wall that
asymptotes to m‖ = +1 in the sample interior acquires a component that points along the inner
normal at the sample edge. At the same time, by (3.26) the magnetization vector in the edge wall
that asymptotes to m‖ = −1 in the sample interior acquires a component that points along the
outer normal at the sample edge.

4. The problem in two dimensions
We now go back to the original two-dimensional problem and consider the regime in which the
Dzyaloshinskii domain walls are present (for an illustration, see figure 3). The appearance of these
domain walls requires that the lateral extent of the ferromagnetic sample be sufficiently large.
Therefore, we introduce the domain Ωε = ε−1Ω , where ε � 1, and redefine the energy in (2.2)
on Ωε :

E(m) =
∫
Ωε

{|∇m|2 + (Q − 1)|m⊥|2 − 2hε · m + κ(m‖∇ · m⊥ − m⊥ · ∇m‖)} d2r, (4.1)

where we also defined a rescaled applied field hε = (hε
⊥, hε

‖) = ε(h0
⊥, h0

‖) = εh0, chosen to have an
appropriate balance between the Zeeman and the domain wall energies (see below). We then
rescale the domain back to Ω and the energy by a factor of ε, which leads to the following family
of energies:

Eε(m) =
∫
Ω

{ε|∇m|2 + ε−1(Q − 1)|m⊥|2 − 2h0
‖m‖ − 2h0

⊥ · m⊥

+ κ(m‖∇ · m⊥ − m⊥ · ∇m‖)} d2r. (4.2)

The purpose of this section is to understand the behaviour of global energy minimizers of Eε as
ε → 0, which corresponds to the regime of interest. Throughout the rest of this paper, Ω ⊂ R

2 is
assumed to be a bounded domain with boundary of class C2. This is done merely to reduce the
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Figure 3. Schematics of a magnetization configuration containing edge walls and a Dzyaloshinskii wall. The arrows show the
in-plane components of the magnetization vector, the colours correspond to the out-of-plane component (‘red’ is up, ‘violet’ is
down, also indicated by up/down symbols). (Online version in colour.)

technicalities of the proofs and focus on the vectorial aspects of the problem involving DMI. With
slight modifications, the proof should apply to the case when ∂Ω is a union of finitely many curve
segments of class C1 (see also [38, Remark 1.3]).

Our main tool for the analysis of the variational problem associated with (4.2) will be the
following Γ -convergence result.

Theorem 4.1. Let h0 = (h0
⊥, h0

‖) ∈ L∞(Ω ; R3), Q > 1 and 0 < κ <
√

Q − 1. Then, as ε → 0, we have

Eε
Γ−→ E0 with respect to the L1 convergence, where

E0(m‖) = σedgeH1(∂Ω) + σwallH1(∂∗Ω+) − 2
∫
Ω

h0
‖m‖ d2r, (4.3)

in which m‖ ∈ BV(Ω ; {−1, 1}) and ∂∗Ω+ is the reduced boundary of the set Ω+, where

Ω± = {x ∈ Ω : m‖(x) = ±1}. (4.4)

More precisely:

(i) For any sequence of mε = (mε
⊥, mε

‖) ∈ H1(Ω ; S2) such that lim supε→0 Eε(mε) < +∞ there is a

subsequence (not relabelled) and a function m0
‖ ∈ BV(Ω ; {−1, 1}) such that mε

‖ → m0
‖ and |mε

⊥| →
0 in L1(Ω) as ε → 0, and

lim inf
ε→0

Eε(mε) ≥ E0(m0
‖). (4.5)

(ii) For any m0
‖ ∈ BV(Ω ; {−1, 1}) there is a sequence of mε = (mε

⊥, mε
‖) ∈ H1(Ω ; S2) such that mε

‖ →
m0

‖ and |mε
⊥| → 0 in L1(Ω) as ε → 0, and

lim sup
ε→0

Eε(mε) ≤ E0(m0
‖). (4.6)

Proof. The proof follows the classical argument of Modica [38] adapted to the vectorial
micromagnetic setting and taking into account the boundary contributions to the energy. The
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latter arise after integration by parts:

Eε(m) =
∫
Ω

(ε|∇m|2 + ε−1(Q − 1)|m⊥|2 − 2h0
‖m‖ − 2h0

⊥ · m0
⊥ − 2κm⊥ · ∇m‖) d2r

+ κ

∫
∂Ω

m̃‖(m̃⊥ · ν) dH1(r), (4.7)

where ν is the outward unit normal to ∂Ω and (m̃⊥, m̃‖) is the trace of (m⊥, m‖) on ∂Ω . The proof
proceeds in three steps.
Step 1: Compactness. Given an admissible sequence of mε = (mε

⊥, mε
‖) satisfying Eε(mε) ≤ C as ε → 0

for some C > 0 independent of ε, with the help of (4.7) and an elementary bound on the DMI term
we can write∫

Ω

(ε|∇mε|2 + ε−1(Q − 1)|mε
⊥|2 − 2κ|mε

⊥| |∇mε
‖|) d2r ≤ C + 2‖|h0|‖L∞(Ω)|Ω| + κH1(∂Ω). (4.8)

Therefore, from (3.17) we obtain
∫
Ω∩{|mε

‖|<1}

(
ε|∇mε

‖|2
1 − |mε

‖|2
+ ε−1(Q − 1)(1 − |mε

‖|2)

)
d2r

− 2κ

∫
Ω

√
1 − |mε

‖|2 |∇mε
‖| d2r ≤ C′, (4.9)

for some constant C′ > 0 independent of ε. Applying the Modica–Mortola trick to the first line in
(4.9) and using the fact that by (3.16) we have |∇mε

‖| = 0 whenever |mε
‖| = 1, we obtain

2
∫
Ω

(
√

Q − 1 − κ

√
1 − |mε

‖|2)|∇mε
‖| d2r ≤ C′. (4.10)

This is equivalent to
∫

Ω |∇Φ(mε
‖)| d2r ≤ C′, where

Φ(s) = 2
∫ s

0
(
√

Q − 1 − κ
√

1 − t2) dt = 2s
√

Q − 1 − κs
√

1 − s2 − κ arcsin s (4.11)

is a continuously differentiable, strictly increasing odd function of s ∈ [−1, 1]. Furthermore, by
our assumption on κ we have 0 < 2(

√
Q − 1 − κ) ≤ Φ ′(s) ≤ 2

√
Q − 1. Therefore, by weak chain

rule [48, Proposition 9.5] we have

‖mε
‖‖W1,1(Ω) ≤ C′′, (4.12)

for some C′′ > 0 independent of ε. In turn, by compactness in BV(Ω) and the compact embedding
of BV(Ω) into L1(Ω) [53], this yields, upon extraction of a subsequence, that mε

‖ → m0
‖ in L1(Ω) for

some m0
‖ ∈ BV(Ω).

To prove that |m0
‖| = 1 and, as a consequence, that |mε

⊥| → 0 in L1(Ω), we combine (4.9) and
(4.12) to get

ε−1(Q − 1)
∫
Ω

(1 − |mε
‖|2) d2r ≤ C′ + 2κC′′. (4.13)

Therefore, the integral in the left-hand side of (4.13) converges to zero as ε → 0 and, hence,
mε

‖(x) → ±1 for a.e. x ∈ Ω . This concludes the proof of the compactness part of our Γ -convergence
result.
Step 2: Lower bound. We now proceed to establish (4.5). By the Modica–Mortola type arguments in
Step 1, we can estimate the energy from below as

Eε(mε) ≥
∫
Ω

(|∇Φ(mε
‖)| − 2h0

‖mε
‖ − 2h0

⊥ · mε
⊥) d2r − κ

∫
∂Ω

|m̃ε
‖|
√

1 − |m̃ε
‖|2 dH1(r). (4.14)

Let uε = Φ(mε
‖). Then the lower bound in (4.14) may be rewritten as

Eε(mε) ≥
∫
Ω

(|∇uε| − 2h0
‖mε

‖ − 2h0
⊥ · mε

⊥) d2r +
∫
∂Ω

σ (ũε) dH1(r), (4.15)

 on April 5, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


14

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160666

...................................................

where σ (u) = −κ|Φ−1(u)|
√

1 − |Φ−1(u)|2 and ũε is the trace of uε on ∂Ω , noting that u =
Φ(s) defines a continuously differentiable one-to-one map from [−1, 1] to I = [−2

√
Q − 1 +

1
2 πκ , 2

√
Q − 1 − 1

2 πκ]. We next define

σ̃ (u) = |u| + min
t∈I

(σ (t) − |t|) u ∈ I. (4.16)

A straightforward calculation shows that we have explicitly

σ̃ (u) = |u| −
√

4(Q − 1) − κ2 + κ arcsin

√
1 − κ2

4(Q − 1)
. (4.17)

In particular, σ̃ (u) is a 1-Lipschitz function of u, and by definition σ̃ (u) ≤ σ (u). Therefore, by [38,
Proposition 1.2] and the fact that |mε

⊥| → 0 in L1(Ω), proved in Step 1, we have

lim inf
ε→0

Eε(mε) ≥ lim inf
ε→0

(∫
Ω

|∇uε| d2r +
∫
∂Ω

σ̃ (ũε) dH1(r)
)

− 2
∫
Ω

h0
‖m0

‖ d2r

≥
∫
Ω

|∇u0| d2r +
∫
∂Ω

σ̃ (ũ0) dH1(r) − 2
∫
Ω

h0
‖m0

‖ d2r, (4.18)

where u0 ∈ BV(Ω ; {−2
√

Q − 1 + 1
2 πκ , 2

√
Q − 1 − 1

2 πκ}) and uε → u0 in L1(Ω). In (4.18), the first
integral in the last line denotes the total variation of u0, and the second term is understood as an
integral of the trace of a BV function [53]. Note that by (4.17) we have σ̃ (ũ0) = σedge and |∇u0| =
1
2 σwall|∇m0

‖|, after straightforward algebra. Therefore, the last inequality is equivalent to

lim inf
ε→0

Eε(mε) ≥ σwall

2

∫
Ω

|∇m0
‖| d2r + σedgeH1(∂Ω) − 2

∫
Ω

h0
‖m0

‖ d2r, (4.19)

which coincides with (4.5) [53].
Step 3: Upper bound. Without loss of generality, we may assume h‖ = 0 and h⊥ = 0. As we have to
preserve the constraint |m| = 1, we will construct an upper bound, using the angle variables θ and
φ. Namely, we define m = (sin θ cos φ, sin θ sin φ, cos θ ) and rewrite the energy in (4.2) in terms of
θ and φ (assumed to be sufficiently smooth) as follows:

E(m) =
∫
Ω

(ε|∇θ |2 + ε sin2 θ |∇φ|2 + ε−1(Q − 1) sin2 θ ) d2r

+ κ

∫
Ω

(sin θ cos θ − θ )∇ · v(φ) d2r + κ

∫
∂Ω

θv(φ) · ν dH1(r), (4.20)

where v(φ) = (cos φ, sin φ), and we used integration by parts.
Let Ω± be defined as in (4.4) with m‖ = m0

‖. Without loss of generality, we assume that ∂∗Ω+

has C2 regularity, and that ∂∗Ω+ intersects ∂Ω transversally, if at all. We define

θ∗(x) =
{

0 x ∈ Ω+

π x ∈ Ω− and θb(x) =
{

θ∗
0 x ∈ ∂Ω\∂Ω−

π − θ∗
0 x ∈ ∂Ω\∂Ω+ , (4.21)

where θ∗
0 is defined in (3.32), and take a sequence of θε ∈ C1(Ω̄) such that

0 ≤ θε ≤ π , θε → θ∗ in L1(Ω), θε → θb in L1(∂Ω). (4.22)

Note that we also have θε → θ∗ in Lq(Ω) for every q > 1.
Now, for a fixed 1 < p < 2, we take two functions φ±∗ ∈ W1,p(Ω±) with values in [0, 2π ) such

that

v(φ̃±
∗ (x)) = ∓νΩ± (x) for a.e. x ∈ ∂Ω±, (4.23)

where νΩ± is the outward normal to Ω± and φ̃±∗ are the traces of φ±∗ on ∂Ω±. Such functions exists,
for example, by [54, Theorem 2], as φ̃±∗ are C1 functions of the arclength, except at a finite number
of isolated points where they have jump discontinuities, and, hence, belong to the appropriate

 on April 5, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


15

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160666

...................................................

Besov spaces in the assumptions of [54]. Next, we define φ∗ ∈ W1,p(Ω) as

φ∗(x) =
{

φ−∗ (x) x ∈ Ω−

φ+∗ (x) x ∈ Ω+ (4.24)

and observe that by construction we have

v(φ̃∗) =

⎧⎪⎪⎨
⎪⎪⎩

νΩ on ∂Ω− ∩ ∂Ω

−νΩ on ∂Ω+ ∩ ∂Ω

ν∗ on ∂∗Ω+
, (4.25)

where ν’s are the corresponding outward normals to the respective boundaries and φ̃∗ is the trace
of φ∗ on those boundaries. We can then construct, using a regularization and a diagonal argument,
a sequence of φε ∈ C1(Ω̄) such that

φε → φ∗ in W1,p(Ω) and ε|∇φε|2 → 0 in L1(Ω). (4.26)

It is then clear that, as ε → 0, we have∫
Ω

θε∇ · v(φε) d2r → π

∫
Ω−

∇ · v(φ∗) d2r = πH1(∂∗Ω+) + πH1(∂Ω− ∩ ∂Ω), (4.27)

∫
Ω

sin θε cos θε∇ · v(φε) d2r → 0 (4.28)

and
∫
∂Ω

θεv(φε) · ν dH1(r) → −θ∗
0H1(∂Ω+ ∩ ∂Ω) + (π − θ∗

0 )H1(∂Ω− ∩ ∂Ω). (4.29)

Passing to the limit as ε → 0 in the energy (4.20) and combining the terms, we obtain

lim sup
ε→0

E(mε) = lim sup
ε→0

∫
Ω

(ε|∇θε|2 + ε−1(Q − 1) sin2 θε) d2r

− πκH1(∂∗Ω+) − κθ∗
0H1(∂Ω). (4.30)

In order to conclude, we need to construct a sequence of θε ∈ C1(Ω̄) satisfying (4.22) such that

lim sup
ε→0

∫
Ω

(ε|∇θε|2 + ε−1(Q − 1) sin2 θε) d2r = E0(m‖) + πκH1(∂∗Ω+) + κθ∗
0H1(∂Ω). (4.31)

This construction was done in a more general setting in [40, Lemma 2]) and, therefore, using this
result we conclude that lim supε→0 E(mε) = E0(m‖), where mε = (sin θε cos φε , sin θε sin φε , cos θε)
and (θε , φε) are as above. �

As an immediate consequence of Γ -convergence, we have the following asymptotic
characterization of minimizers of the energy Eε in terms of the minimizers of E0.

Corollary 4.2. Under the assumptions of theorem 4.1, let mε = (mε
⊥, mε

‖) ∈ H1(Ω ; S2) be a sequence of

minimizers of Eε . Then, after extracting a subsequence, we have mε
‖ → m0

‖ and |mε
⊥| → 0 in L1(Ω), where

m0
‖ ∈ BV(Ω ; {−1, 1}) is a minimizer of E0.

For a simple example of an application of the above result, consider the problem on the domain
Ω = (−2L, 2L) × (−L, L), corresponding to the geometry in figure 3, in the presence of an applied
field h0

‖ = −αx, with L > 0 and α > 0. Then it is easy to see that the minimizer of E0 is m‖ = −sgn(x)
for all α sufficiently large, as in figure 3.

We note that by classical results for problems with prescribed mean curvature (e.g. [55] and
references therein), the minimizers of E0 are functions, whose jump set Γ ⊂ Ω̄ is a union of finitely
many C1,1 curve segments satisfying weakly the equation

σwallK(x) = 4h0
‖(x), x ∈ Γ ∩ Ω , Γ ′(x) ⊥ ∂Ω , x ∈ Γ ∩ ∂Ω , (4.32)

where K is the curvature of Γ , positive if the set Ω+ is convex, and the prime denotes arclength
derivative. Physically, these are interpreted as the Dzyaloshinskii domain walls separating the
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domains of opposite out-of-plane magnetization under the external applied field. We also note
that the limit energy E0 contains a contribution from the edge domain walls, which, however, is
independent of the magnetization orientation near the edge and thus only adds a constant term
to the energy.

Remark 4.3. We note that by the results of [39], we can also say that if m0
‖ is an isolated local

minimizer of E0, then there exists a sequence of local minimizers mε of Eε such that mε
‖ → m0

‖ and
mε

⊥ → 0 in L1(Ω).

Before concluding this section, let us comment on some topological issues related to the result
in theorem 4.1. We note that our upper construction in theorem 4.1 uses the magnetization
configurations that have topological degree zero. This has to do with the representation of the
test configurations mε adopted in the proof in terms of the angle variables (θε , φε), which are
assumed to be of class C1 up to the boundary. Therefore, the proof does not immediately extend
to the admissible classes with prescribed topological degree distinct from zero. This is not a
problem, however, in view of the fact that away from the domain walls one could insert skyrmion
profiles [33], suitably localized, into our test functions to prescribe a fixed topological degree for ε

sufficiently small. Our result would then not be altered, in view of the fact that in the considered
scaling the energy of a skyrmion is a lower order perturbation to that of chiral walls. In other
words, under the considered scaling assumptions our energy does not see magnetic skyrmions.

5. Discussion
To summarize, we have analysed the basic domain wall profiles in the local version of the
micromagnetic modelling framework containing DMI, which is governed by the energy in (2.2).
Specifically, we performed an analysis of the one-dimensional energy minimizing configurations
on the whole line and on half-line and showed that the magnetization profiles expected from
the physical considerations based on specific ansätze are indeed the unique global energy
minimizers for |κ| <√

Q − 1. This is slightly below (approx. 30%) the threshold value of |κ| =
κc = (4/π )

√
Q − 1, beyond which helical structures emerge. Our methods rely on a sharp Modica–

Mortola type inequality and do not extend to the narrow range of
√

Q − 1 ≤ |κ| < (4/π )
√

Q − 1. It
is natural to expect that our result persists all the way to |κ| = κc, but to justify this statement one
would need to develop new analysis tools for the vectorial variational problem associated with
the domain walls.

Our one-dimensional analysis in §3 identified two basic types of chiral domain walls: the
interior and the edge domain walls. These one-dimensional domain wall solutions are the
building blocks of the more complicated two-dimensional magnetization configurations in
ultrathin films subjected to sufficiently small applied magnetic fields. This can be seen from the
analysis of Γ -convergence of the energy in (4.2) performed in §4. Either global or local energy
minimizers for ε � 1 may then be approximated by those of the energy in (4.3), which determines
the geometry of the magnetic domains in the sample. Our findings indicate that in the considered
limit the magnetization configurations solve the prescribed mean curvature problem in (4.32),
again, for |κ| <√

Q − 1. We note that our variational setting could similarly be used to study the
gradient flow dynamics governed by (4.2) (for a related study, see [40]). Other physical effects,
however, need to be incorporated to account for some unusual properties of chiral domain walls
such as their tilt in sufficiently strong external fields [22,35].

Finally, we would like to comment on the assumptions that lead to the model in (4.2), and on its
possible generalizations. As was already mentioned, this energy functional is local, with the effect
of the stray field surviving in the renormalized magnetocrystalline anisotropy term only. This is
justified in the limit of arbitrarily thin ferromagnetic films [45]. In practice, this contribution is
only the leading order term in the expansion of the energy in the film thickness for films whose
thickness is less than the exchange length �ex of the material. Going to the next order, two types
of contributions appear. The first is the one coming from the sample boundary. In the limit of the
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dimensionless film thickness δ = d/�ex going to zero, this contribution becomes local and adds an
extra penalty term for the in-plane component of the magnetization at the edge [56]:

Eedge
ε (m) = δ| ln δ|

2π

∫
∂Ω

(ν · m⊥)2 dH1(r), (5.1)

where ν is the outward unit normal to ∂Ω . Here we took into account that in a perpendicular
material the magnetic ‘charge’ at the sample boundary would be smeared on the scale of �ex. In the
interior, the leading order contribution from the stray field energy beyond the shape anisotropy
can be shown to be [46]

Ebulk
ε (m) = − δ

8π

∫
Ω

∫
Ω

(m‖(r) − m‖(r′))2

|r − r′|3 d2r d2r′

+ δ

4π

∫
Ω

∫
Ω

∇ · m⊥(r) ∇ · m⊥(r′)
|r − r′| d2r d2r′. (5.2)

Furthermore, for δ = λ| ln ε|−1 it was shown in the case κ = 0 and periodic boundary conditions
in the plane that as ε → 0 the effect of the stray field energy is to renormalize the one-dimensional
wall energy to a lower value, as long as λ < λc = 2π

√
Q − 1 [46]. It is natural to expect from the

results of [46] that, as ε → 0, the wall energy for κ > 0 will become

σwall = 4
√

Q − 1 − πκ − 2λ

π
. (5.3)

Similarly, one would expect that in this regime the edge wall energy σedge would also be
renormalized to minimize the sum of the exchange, anisotropy, DMI energies (all contained
in (4.2)) and the stray field energy contributions from (5.1) and (5.2). This study is currently
underway. At the same time, for λ > λc one expects spontaneous onset of milti-domain
magnetization patterns and qualitatively new system behaviour (for a recent experimental
illustration, see [15]).
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