19 research outputs found

    Genetic regressive trajectories in colorectal cancer: A new hallmark of oligo-metastatic disease?

    No full text
    Colorectal cancer (CRC) originates as consequence of multiple genetic alterations. Some of the involved genes have been extensively studied (APC, TP53, KRAS, SMAD4, PIK3CA, MMR genes) in highly heterogeneous and poly-metastatic cohorts. However, about 10% of metastatic CRC patients presents with an indolent oligo-metastatic disease differently from other patients with poly-metastatic and aggressive clinical course. Which are the genetic dynamics underlying the differences between oligo- and poly-metastatic CRC? The understanding of the genetic trajectories (primary→metastatic) of CRC, in patients selected to represent homogenous clinical models, is crucial to make genotype/phenotype correlations and to identify the molecular events pushing the disease towards an increasing malignant phenotype. This information is crucial to plan innovative therapeutic strategies aimed to reverse or inhibit these phenomena. In the present study, we review the genetic evolution of CRC with the intent to give a developmental perspective on the border line between oligo- and poly-metastatic diseases

    The Histone Methyltransferase DOT1L Is a Functional Component of Estrogen Receptor Alpha Signaling in Ovarian Cancer Cells

    No full text
    Although a large fraction of high-grade serous epithelial ovarian cancers (OCs) expresses Estrogen Receptor alpha (ERα), anti-estrogen-based therapies are still not widely used against these tumors due to a lack of sufficient evidence. The histone methyltransferase Disruptor of telomeric silencing-1-like (DOT1L), which is a modulator of ERα transcriptional activity in breast cancer, controls chromatin functions involved in tumor initiation and progression and has been proposed as a prognostic OC biomarker. As molecular and clinico-pathological data from TCGA suggest a correlation between ERα and DOT1L expression and OC prognosis, the presence and significance of ERα/DOT1L association was investigated in chemotherapy-sensitive and chemotherapy-resistant ER+ OC cells. RNA sequencing before and after inhibition of these factors showed that their activity is implicated in OC cell proliferation and that they functionally cooperate with each other to control the transcription of genes involved in key cancer cell features, such as the cell cycle, epithelial-mesenchymal transition (EMT), drug metabolism, and cell-to-cell signaling, as well as expression of the ERα gene itself. Together with evidence from loss-of-function genetic screens showing that ERα and DOT1L behave as core fitness factors in OC cells, these results suggest that combined inhibition of their activity might be effective against ERα-expressing, chemotherapy-resistant ovarian tumors

    Enhanced ZNF521 expression induces an aggressive phenotype in human ovarian carcinoma cell lines

    No full text
    Epithelial ovarian carcinoma (EOC) is the most lethal gynecological tumor, that almost inevitably relapses and develops chemo-resistance. A better understanding of molecular events underlying the biological behavior of this tumor, as well as identification of new biomarkers and therapeutic targets are the prerequisite to improve its clinical management. ZNF521 gene amplifications are present in >6% of OCs and its overexpression is associated with poor prognosis, suggesting that it may play an important role in OC. Increased ZNF521 expression resulted in an enhancement of OC HeyA8 and ES-2 cell growth and motility. Analysis of RNA isolated from transduced cells by RNA-Seq and qRT-PCR revealed that several genes involved in growth, proliferation, migration and tumor invasiveness are differentially expressed following increased ZNF521 expression. The data illustrate a novel biological role of ZNF521 in OC that, thanks to the early and easy detection by RNA-Seq, can be used as biomarker for identification and treatment of OC patients

    The RNA-mediated estrogen receptor α interactome of hormone-dependent human breast cancer cell nuclei

    No full text
    Estrogen Receptor alpha (ERα) is a ligand-inducible transcription factor that mediates estrogen signaling in hormone-responsive cells, where it controls key cellular functions by assembling in gene-regulatory multiprotein complexes. For this reason, interaction proteomics has been shown to represent a useful tool to investigate the molecular mechanisms underlying ERα action in target cells. RNAs have emerged as bridging molecules, involved in both assembly and activity of transcription regulatory protein complexes. By applying Tandem Affinity Purification (TAP) coupled to mass spectrometry (MS) before and after RNase digestion in vitro, we generated a dataset of nuclear ERα molecular partners whose association with the receptor involves RNAs. These data provide a useful resource to elucidate the combined role of nuclear RNAs and the proteins identified here in ERα signaling to the genome in breast cancer and other cell types

    Global View of Candidate Therapeutic Target Genes in Hormone-Responsive Breast Cancer

    No full text
    Breast cancer (BC) is a heterogeneous disease characterized by different biopathological features, differential response to therapy and substantial variability in long-term-survival. BC heterogeneity recapitulates genetic and epigenetic alterations affecting transformed cell behavior. The estrogen receptor alpha positive (ERα+) is the most common BC subtype, generally associated with a better prognosis and improved long-term survival, when compared to ERα-tumors. This is mainly due to the efficacy of endocrine therapy, that interfering with estrogen biosynthesis and actions blocks ER-mediated cell proliferation and tumor spread. Acquired resistance to endocrine therapy, however, represents a great challenge in the clinical management of ERα+ BC, causing tumor growth and recurrence irrespective of estrogen blockade. Improving overall survival in such cases requires new and effective anticancer drugs, allowing adjuvant treatments able to overcome resistance to first-line endocrine therapy. To date, several studies focus on the application of loss-of-function genome-wide screenings to identify key (hub) "fitness" genes essential for BC progression and representing candidate drug targets to overcome lack of response, or acquired resistance, to current therapies. Here, we review the biological significance of essential genes and relative functional pathways affected in ERα+ BC, most of which are strictly interconnected with each other and represent potential effective targets for novel molecular therapies

    S1 Table -

    No full text
    Differentially expressed genes (DEGs) in HeyA8 (A) and ES-2 (B) OC cell lines with fold change and p-value. (XLSX)</p
    corecore