106 research outputs found

    Characterisation of Estrogen Receptor Alpha (ERα) Expression in Breast Cancer Cells and Effect of Drug Treatment Using Targeted Nanoparticles and SERS

    Get PDF
    The detection and identification of estrogen receptor alpha (ERα), one of the main biomarkers in breast cancer, is crucial for the clinical diagnosis and therapy of the disease. Here, we use a non-destructive approach for detecting and localising ERα expression at the single cell level using surface enhanced Raman spectroscopy (SERS) combined with functionalised gold nanoparticles (AuNPs). Antibody functionalised nanotags (ERα-AuNPs) showed excellent biocompatibility and enabled the spatial and temporal understanding of ERα location in breast cancer cell lines with different ERα expression status. Additionally, we developed an approach based on the percentage area of SERS response to qualitatively measure expression level in ERα positive (ERα+) breast cancer cells. Specifically, the calculation of relative SERS response demonstrated that MCF-7 cells (ERα+) exhibited higher nanotag accumulation resulting in a 4.2-times increase in SERS signal area in comparison to SKBR-3 cells (ERα-). These results confirmed the strong targeting effect of ERα-AuNPs towards the ERα receptor. The functionalised ERα-AuNP nanotags were also used to investigate the activity of fulvestrant, the first-in-class approved selective estrogen receptor degrader (SERD). SERS mapping confirmed that ERα degradation occurred after fulvestrant treatment since a weaker SERS signal, and hence accumulation of nanotags, was observed in MCF-7 cells treated with fulvestrant. Most importantly, a correlation coefficient of 0.9 between the SERS response and the ERα expression level, obtained by western blot, was calculated. These results confirmed the strong relationship between the two approaches and open up the possibilities of using SERS as a tool for the estimation of ERα expression levels, without the requirement of destructive and time-consuming techniques. Therefore, the potential of using SERS as a rapid and sensitive method to understand the activity of SERDs in breast cancer is demonstrated

    Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement Insights from in vivo imaging

    Get PDF
    Recent advances in confocal and multi-photon microscopy, together with fluorescent probe development, have enabled cancer biology studies to go beyond the culture dish and interrogate cancer-associated processes in the complex in vivo environment. Regulation of the tumor suppressor protein E-cadherin plays an important role in cancer development and progression, and may contribute to the decision between ‘single cell’ and ‘collective invasion’ in vivo. Mounting evidence from in vitro and in vivo experiments places the two nonreceptor protein tyrosine kinases Src and Focal Adhesion Kinase at the heart of E-cadherin regulation and the crosstalk between integrins and cadherins. Here we discuss recent insights, attained using high-resolution fluorescent in vivo imaging, into the regulation of E-cadherin and collective invasion. We focus on the regulatory crosstalk between the Src/FAK signaling axis and E-cadherin in vivo

    Imaging Drug Uptake by Bioorthogonal Stimulated Raman Scattering Microscopy

    Get PDF
    Stimulated Raman scattering (SRS) microscopy in tandem with bioorthogonal Raman labelling strategies is set to revolutionise the direct visualisation of intracellular drug uptake. Rational evaluation of a series of Raman-active labels has allowed the identification of highly active labels which have minimal perturbation on the biological efficacy of the parent drug. Drug uptake has been correlated with markers of cellular composition and cell cycle status, and mapped across intracellular structures using dual-colour and multi-modal imaging. The minimal phototoxicity and low photobleaching associated with SRS microscopy has enabled real-time imaging in live cells. These studies demonstrate the potential for SRS microscopy in the drug development process

    Kinetic analysis of bioorthogonal reaction mechanisms using Raman microscopy

    Get PDF
    Raman spectroscopy is well-suited to the study of bioorthogonal reaction processes because it is a non-destructive technique, which employs relatively low energy laser irradiation, and water is only very weakly scattered in the Raman spectrum enabling live cell imaging. In addition, Raman spectroscopy allows species-specific label-free visualisation; chemical contrast may be achieved when imaging a cell in its native environment without fixatives or stains. Combined with the rapid advances in the field of Raman imaging over the last decade, particularly in stimulated Raman spectroscopy (SRS), this technique has the potential to revolutionise our mechanistic understanding of the biochemical and medicinal chemistry applications of bioorthogonal reactions. Current approaches to the kinetic analysis of bioorthogonal reactions (including heat flow calorimetry, UV-vis spectroscopy, fluorescence, IR, NMR and MS) have a number of practical shortcomings for intracellular applications. We highlight the advantages offered by Raman microscopy for reaction analysis in the context of both established and emerging bioorthogonal reactions, including the copper(i) catalysed azide-alkyne cycloaddition (CuAAC) click reaction and Glaser-Hay coupling

    FAK Deletion Promotes p53-Mediated Induction of p21, DNA-Damage Responses and Radio-Resistance in Advanced Squamous Cancer Cells

    Get PDF
    Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is elevated in a variety of human cancers. While FAK is implicated in many cellular processes that are perturbed in cancer, including proliferation, actin and adhesion dynamics, polarisation and invasion, there is only some limited information regarding the role of FAK in radiation survival. We have evaluated whether FAK is a general radio-sensitising target, as has been suggested by previous reports. We used a clean genetic system in which FAK was deleted from mouse squamous cell carcinoma (SCC) cells (FAK −/−), and reconstituted with exogenous FAK wild type (wt). Surprisingly, the absence of FAK was associated with increased radio-resistance in advanced SCC cells. FAK re-expression inhibited p53-mediated transcriptional up-regulation of p21, and a sub-set of other p53 target genes involved in DNA repair, after treatment with ionizing radiation. Moreover, p21 depletion promoted radio-sensitisation, implying that FAK-mediated inhibition of p21 induction is responsible for the relative radio-sensitivity of FAK-proficient SCC cells. Our work adds to a growing body of evidence that there is a close functional relationship between integrin/FAK signalling and the p53/p21 pathway, but demonstrates that FAK's role in survival after stress is context-dependent, at least in cancer cells. We suggest that there should be caution when considering inhibiting FAK in combination with radiation, as this may not always be clinically advantageous

    Detection of Estrogen Receptor Alpha and Assessment of Fulvestrant Activity in MCF-7 Tumor Spheroids Using Microfluidics and SERS

    Get PDF
    Breast cancer is one of the leading causes of cancer death in women. Novel in vitro tools that integrate three-dimensional (3D) tumor models with highly sensitive chemical reporters can provide useful information to aid biological characterization of cancer phenotype and understanding of drug activity. The combination of surface-enhanced Raman scattering (SERS) techniques with microfluidic technologies offers new opportunities for highly selective, specific, and multiplexed nanoparticle-based assays. Here, we explored the use of functionalized nanoparticles for the detection of estrogen receptor alpha (ERα) expression in a 3D tumor model, using the ERα-positive human breast cancer cell line MCF-7. This approach was used to compare targeted versus nontargeted nanoparticle interactions with the tumor model to better understand whether targeted nanotags are required to efficiently target ERα. Mixtures of targeted anti-ERα antibody-functionalized nanotags (ERα-AuNPs) and nontargeted (against ERα) anti-human epidermal growth factor receptor 2 (HER2) antibody-functionalized nanotags (HER2-AuNPs), with different Raman reporters with a similar SERS signal intensity, were incubated with MCF-7 spheroids in microfluidic devices and spectroscopically analyzed using SERS. MCF-7 cells express high levels of ERα and no detectable levels of HER2. 2D and 3D SERS measurements confirmed the strong targeting effect of ERα-AuNP nanotags to the MCF-7 spheroids in contrast to HER2-AuNPs (63% signal reduction). Moreover, 3D SERS measurements confirmed the differentiation between the targeted and the nontargeted nanotags. Finally, we demonstrated how nanotag uptake by MCF-7 spheroids was affected by the drug fulvestrant, the first-in-class approved selective estrogen receptor degrader (SERD). These results illustrate the potential of using SERS and microfluidics as a powerful in vitro platform for the characterization of 3D tumor models and the investigation of SERD activity

    Utilizing stimulated Raman scattering microscopy to study intracellular distribution of label-free ponatinib in live cells

    Get PDF
    Stimulated Raman scattering (SRS) microscopy represents a powerful method for imaging label-free drug dis-tribution with high resolution. SRS was applied to image label-free ponatinib with high sensitivity and speci-ficity in live human chronic myeloid leukemia (CML) cell lines. This was achieved at biologically relevant, na-nomolar concentrations; allowing determination of ponatinib uptake and sequestration into lysosomes during the development of acquired drug resistance and an improved understanding of target engagement
    • …
    corecore