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Abstract 

Glioblastoma Multiforme (GBM) is a multifaceted and complex disease, which has experienced no 

changes in treatment for nearly two decades and has a 5-year survival rate of only 5.4%. Alongside 

challenges in delivering chemotherapeutic agents across the blood brain barrier (BBB) to the tumour, 

the immune microenvironment is also heavily influenced by tumour signalling. Immunosuppression is 

a major aspect of GBM; however, evidence remains conflicted as to whether pro-inflammatory or anti-

inflammatory therapies are the key to improving GBM treatment. To address both of these issues, 

particle delivery systems can be designed to overcome BBB transport while delivering a wide variety 

of immune-stimulatory molecules to investigate their effect on GBM. This review explores literature 

from the past 3 years that combines particle delivery systems alongside immunotherapy for the 

effective treatment of GBM. 
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1. Introduction 

1.1 Glioblastoma multiforme 

Glioblastoma multiform (GBM) is the most common type of primary adult brain tumour and suffers 

from extremely poor prognoses. The current treatment regime for GBM is much like other cancers; 

surgical resection followed by radiotherapy and chemotherapy. Currently, the first-line 

chemotherapeutic approved for use in GBM is Temozolomide (TMZ), although other chemotherapies 

can be used following disease recurrence, such as Bevacizumab or a combination of procarbazine, 

lomustine and vincristine (PCV).[1] While patient survival showed some improvement with the 

introduction of TMZ in 2005, there have been no significant developments in GBM treatment since 

then and current estimates suggest a 5-year survival rate of just 5.4%.[1–4] Various factors contribute 

to these poor survival rates; the tumour itself has very diffuse edges (Fig. 1), meaning it is not possible 

to surgically remove the tumour in its entirety without risking the removal of healthy brain tissue. The 
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brain is also protected by the blood-brain barrier (BBB), which only allows small and lipophilic 

molecules to pass through without requiring specific transport channels. As a result, the BBB prevents 

the repurposing of chemotherapeutics with high success rates in other forms of cancer for GBM 

treatment. Additionally, GBM is a very heterogeneous disease; gene expression, tumour cell origin, 

and the tumour microenvironment can all contribute to variation within the disease.[5–7] 

To analyse GBM heterogeneity, four distinct subclasses of GBM have been identified based on 

transcriptional profiles; classical, mesenchymal, proneural and neural, each with differing 

prognoses.[5,6,8,9] Classical GBM is classified by amplification of chromosome 7 and epidermal 

growth factor receptor (EGFR), and upregulation of neural stem cell and precursor signalling pathways, 

including Notch and Sonic hedgehog signalling.[5] Unexpectedly, classical GBM shows little to no 

alteration in TP53 expression, despite TP53 aberrations being the most common genetic mutation in 

GBM.[5] Mesenchymal GBM upregulates mesenchymal markers and markers associated with the 

epithelial-to-mesenchymal transition (EMT), and commonly harbours neurofibromin 1 (NF1) and 

phosphatase and tensin homolog (PTEN) mutations.[5] Increased immune infiltration is also seen in 

mesenchymal GBM, likely as a result of NF1 downregulation.[10–12] Proneural GBM is associated with 

high expression of oligodendrocytic development genes, and frequent dysregulation and mutation in 

TP53, platelet-derived growth factor receptor A (PDGFRA) and isocitrate dehydrogenase 1 (IDH1) 

genes.[5] Neural GBM is classified by expression of neuronal markers, including NEFL and GABRA2, 

although does show some increase in oligodendrocyte and astrocytic marker expression.[5] Prognosis 

is best for proneural GBM as it shows a median survival time of 40 months, whereas mesenchymal 

GBM has the poorest prognosis with a median survival of only 15 months.[8] One important aspect to 

consider in regards to these results is that IDH1/2 mutations are often associated with improved 

survival, mutations that are most commonly associated with proneural GBM.[5,13] Additionally, 

research suggests that mesenchymal tumours arise from proneural tumours, an event most frequently 

seen at disease recurrence, which results in treatment resistance and poorer prognoses.[8,14,15]  
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Figure 1. Glioblastoma Tumour Microenvironment. GBM tumours have a very heterogeneous 

microenvironment. Cancer cells drive recruitment of macrophages, microglia, astrocytes, and T cells to 

support tumour growth and promote angiogenesis, while inhibiting inflammatory immune responses. 

Additionally, a hypoxic core develops within the tumour, while cancer cells at the tumour periphery infiltrate 

into surrounding healthy normoxic tissues, creating diffuse edges to the tumour. Created with BioRender.com 

 

As mentioned previously, the immune microenvironment also contributes to tumour heterogeneity, 

both between GBM subtypes and within a single tumour (Fig.1).[5,10–12,16] Given that immune cells 

can contribute to 30% of tumour mass, and are heavily involved in cancer cell regulation, they are a 

crucial aspect to study if we are to improve GBM treatment.[17–19] 

1.2 Immune Regulation in GBM 

The immune cell population in GBM is very heterogeneous, both in terms of different cell populations 

and expression of traditional inflammatory and anti-inflammatory markers, it is generally agreed that 

GBM is a ‘cold’ and immunosuppressive tumour (Fig. 2).[20–23] Various factors contribute to the 

immunosuppressive environment in GBM including the actions of immunosuppressive cytokines 

released by tumour cells, microglia and tumour-associated macrophages (TAMs).[21] TAMs expressing 

the cytokine transforming growth factor-beta 1 (TGF-β1) can drive tumour invasiveness, as well as 

acting alongside IL-10 to downregulate Major histocompatibility complex (MHC) expression in 

microglia and tumour cells.[24,25] Reductions in MHC expression prevent successful antigen 

presentation, increase programmed death-ligand 1 (PD-L1) expression to cause immune cell death, 

https://biorender.com/
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and recruit T regulatory cells (Tregs).[26–29] In addition, the hypoxic tumour microenvironment in 

GBM drives inflammatory gene expression through activation of the signal transducer and activator 

of transcription 3 (STAT3) pathway, which influences the activity of a number of different immune cell 

populations. Overall, immunosuppression maintained by the tumour and innate immune system 

prevents activation of the adaptive immune system.  Increased expression of STAT3 and increased 

numbers of CD163 positive TAMs have both been linked to poor prognosis in GBM, supporting the 

hypothesis that immunosuppression leads to poorer disease outcomes.[10,21,22,30,31]  

 

 

 
Figure 2. Immune Signalling in Glioblastoma. Highlighted are the key pathways in the crosstalk between 

cancer cells and the immune system, covered in this review. Cancer cells release chemokine colony 

stimulating factor 1 (CSF-1) to recruit tumour-associated macrophages (TAMs) and microglia to the tumour 

site, and anti-inflammatory cytokines interleukin 10 (IL-10) and transforming growth factor-beta (TGF-β) to 

suppress the immune system once recruited (1). Additionally, hypoxia in the tumour microenvironment drives 

increased vascular endothelial growth factor (VEGF) expression and upregulation of the signal transducer and 

activator of transcription 3 (STAT3) pathway in microglia and TAMs (2). Overall, this drives release of IL-10 

and TGF-β from microglia and TAMs (3), promoting cancer cell invasiveness and downregulating major 

histocompatibility complex (MHC) expression, reducing MHC-I/T cell receptor (TCR) interactions and antigen 

presentation between MHC-II receptors and TCRs (4). Immune checkpoint proteins, including programmed 

death-ligand 1 (PD-L1) (5a), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) (5b) and receptor for 

advanced glycation end products (RAGE) (5c), are also used to suppress the immune system. PD-L1 

overexpression by cancer cells drives T helper cell apoptosis and T regulatory cell immunosuppressive 

functions. Binding between RAGE and S100B inhibits TAM and microglial production of immunostimulatory 

cytokines, while binding to CLTA-4 on T cells downregulates T cell responses. Created with BioRender.com 

https://biorender.com/
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Nevertheless, despite suggestions that immunotherapy should succeed in treating GBM given the 

detrimental effects of immunosuppression, no benefits to survival have been observed in recurrent 

GBM patients.[32] This is potentially due to many cytokines playing dual roles in both inflammation 

and immune suppression, or because the immune system is so severely inhibited during GBM such 

that immunotherapies are simply not enough to reverse this.[22] Additionally, excessive immune cell 

infiltration has also been shown to be detrimental; tumours containing IDH1/2 mutations show 

reduced recruitment of immune cells and improved survival, while mesenchymal GBM tumours show 

increased infiltration compared to other disease subtypes and have poorer prognoses.[8,10,33] 

However, given that mesenchymal tumours also have increased EMT markers, known drivers of 

tumour invasiveness, this may provide an alternative explanation for poorer outcomes.[5,10] It has 

been hypothesised that increased immune infiltration increases brain volume, which within an 

enclosed space like the brain increases pressure to dangerous levels.[22] For immunotherapy to be 

successful, a balance between driving inflammation and immune cell recruitment must be found. 

Suggestions have been made that immunotherapy can be tailored to tackle cancers with varying 

immune statuses – from immunosuppressed to high immune infiltration.[34] For example, inhibition 

of anti-inflammatory signalling molecules like interleukin 10 (IL-10) and TGF-β is suggested for 

immunosuppressed tumours.[34] 

However, in order to target the immune microenvironment in GBM, treatments must be designed to 

successfully reach the brain.  

 

1.3 Current Treatment Delivery Routes 

Designing drugs to ensure successful delivery to the target site is a complex feat, even without the 

added challenge in central nervous system (CNS) diseases of crossing the BBB. Ideally, for both patient 

compliance and economic reasons, drugs are designed to be taken orally (Fig. 3) – this enables patients 

to easily take medication at home without the need for medical professional to administer them. 

However, oral delivery subjects drugs to hepatic first-pass metabolism, which either limits drug 

bioavailability, or is exploited for the development of prodrugs that only become active following 

metabolism. Intravenous delivery enables drugs to avoid first-pass metabolism, potentially simplifying 

drug design, but often requires professional administration (Fig. 3). For both oral and intravenous 

delivery, drugs must be designed to cross the BBB. Currently, most chemotherapies used in GBM 

patients are given using these two types of delivery; TMZ, lomustine, and procarbazine are given 

orally, while Bevacizumab and vincristine are administered intravenously.[2,35] 
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Interestingly, delivery routes that avoid the BBB are possible. In GBM, given that standard treatment 

often involves surgical resections, it is possible to implant therapeutics directly within the resection 

site. One such therapy, Gliadel® wafers, are biodegradable polymeric 14 mm discs loaded with 

chemotherapeutic carmustine (BCNU), which are able to be implanted directly at the tumour 

site.[36,37] Unfortunately, as surgical resection is not always possible, implanting therapeutics within 

the brain cannot be the primary method of drug delivery.[38] Intrathecal delivery involves injection of 

drugs directly into the cerebrospinal fluid (CSF), a highly invasive procedure currently limited to use 

for pain management and specific chemotherapies for cancers that metastasise to the CSF.[39] Given 

the invasiveness of this procedure, it is best to find other alternative drug delivery routes. Intranasal 

delivery can allow uptake directly into the blood vessels abundant in the nose, but can also bypass the 

BBB by allowing transport through the olfactory and trigeminal nerves directly to the brain (Fig. 3).[40–

42] This is a considerably less invasive technique, although often requires additional modifications to 

improve uptake efficiency, such as the use of ultrasound or additives to increase mucosal membrane 

permeability.[41–43]   
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Figure 3. Administration Routes to the Brain. Particle delivery systems can be administered through a variety 

of routes, depending on their ability to cross the blood brain barrier (BBB). The BBB is formed by pericytes 

coating the blood vessels in the brain, which are in turn surrounded by astrocyte end feet, preventing 

molecules from diffusing across the barrier unless small and lipophilic. If particle delivery systems are small 

and lipophilic, usually between 10-100 nm, or have been functionalised to allow active transport across the 

BBB, they can be delivered orally (1) or intravenously (2) and be able to reach the brain. If this is not possible, 

intranasal delivery (3) is an alternative route to reach the brain via the olfactory nerves, avoiding the BBB. For 

intranasal delivery, particle diameter can be between 100-700 nm. Intrathecal delivery (4) involves injection 

of particles directly into the cerebrospinal fluid in the spinal cord, meaning that particle size and design is not 

limited, but this is a highly invasive procedure. Adapted from “Drug Delivery in Rheumatoid Arthritis”, by 

BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates 

 

Alternatively, drug administration and targeting can be improved through the development of particle 

delivery systems, allowing particle modification to improve delivery without the need to alter the 

drugs themselves.[44] 

 

  

https://app.biorender.com/biorender-templates
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1.4 Particle Delivery Systems 

Generation of nano- and micro-scale particles has been a promising topic of research for many years 

now. These particles exploit the ability to encapsulate compounds within a protective shell, which is 

often made of polymeric materials, but lipid membranes such as liposomes, micelles, and extracellular 

vesicles can also be used (Fig. 4).[44] These shells can increase the half-life and bioavailability of 

compounds, reduce metabolic clearance, and allow surface modifications to improve cell-specific 

targeting to reduce harmful side effects, without the need to modify the original compound and risk 

reducing efficacy (Fig. 4).[44,45] Additionally, encapsulation provides a method for the delivery of 

drugs with limited solubility, which would otherwise have low bioavailability.[44,45] Currently, more 

than 30 therapies exploiting particle delivery systems have been approved by the Food and Drug 

Administration (FDA).[45–47] 

 

In terms of GBM, the use of a particle delivery system may provide a potential solution to crossing the 

BBB without needing to modify existing drugs to accomplish this, or enable drugs to be delivered via 

alternative routes, such as intranasally (Fig. 3). While generation of a successful particle delivery 

 
Figure 4. Particle Delivery Systems. Particle delivery systems can be either nanoparticles or microparticles, 

depending on the size of the system. They are commonly comprised of a polymeric or lipid matrix (1), which 

enables encapsulation of a cargo. Either this can involve direct interaction of the cargo with the matrix, or 

encapsulation of the cargo within a hollow, or fluid, particle core (2). Particle functionalisation involves 

proteins, sugars, or other molecules being attached to the surface of the particle material (3). Attachment 

can be through direct conjugation between the material and the functionalising molecule, or indirect 

interactions, such as embedding proteins within a liposome membrane. Particles can also be functionalised 

by coating the surface in another class of material, or by encapsulating the particle within a membrane. 

Particles do not have to contain cargo or functionalisation to be used therapeutically, depending on the 

material used. Created with BioRender.com 

https://biorender.com/
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system remains complex – with some designs unable to cross the BBB, or suffering from low cellular 

uptake – steps can be taken to improve bioavailability and cell-specific targeting.[48] Altering the size, 

choice of materials used, surface charge, and functionalising particle surfaces with proteins can 

improve transport across the BBB (Fig. 3).[49] Overall, this generates a highly tuneable system that is 

considerably easier to create than modifying existing drugs to be able to cross the BBB. Thereby 

enabling the use of chemotherapeutics that have been successful in other solid tumours, but that have 

not yet been exploited for GBM due to transport difficulties. Even in terms of the existing GBM 

chemotherapeutic temozolomide, particle encapsulation has been shown to improve the efficiency of 

BBB transport as well as reducing toxicity to surrounding tissues.[50] Additionally, particles 

themselves can even be tailored for use as a therapy, with the emergence of photothermal and 

magnetic hyperthermia therapies.[51,52] 

 

1.5 Model Systems 

In order to investigate particle delivery systems within GBM, different model systems are used with 

varying advantages and disadvantages.[53,54] Here we summarise the key models referenced in this 

review. To simulate the bulk of the tumour itself, primary patient-derived cells provide the closest 

disease model, and while they are sometimes used, established GBM cell lines such as U87 cells are 

more commonly exploited.[54–56]. In vitro assays allow culturing of particles with cells or spheroids 

and are ideal for investigating the initial stages of particle delivery and cellular effects; toxicity, particle 

uptake, and cargo release and effects. More complex in vitro systems have also been developed, such 

as in vitro BBB models.[57] In vivo models include genetically engineered mice in which oncogene 

overexpression or loss of tumour suppressors are used to drive GBM development, but xenograft 

models using GBM cell lines are often favoured, predominantly using mouse models, although 

zebrafish models are becoming more popular.[53,54,58–61] Ideally, an orthotopic xenograft model is 

best to recreate GBM; cancer cells are implanted in the native tumour tissue, in this case the brain. 

However, xenograft models using human cell lines require the use of immuno-compromised mice, and 

for studies investigating the immune microenvironment it is necessary to use mouse-derived GBM 

models where the tumour cells can be implanted into syngeneic hosts. This ensures the tumour and 

immune microenvironment mimic the actual disease as closely as possible, as well as enabling testing 

of particle delivery systems’ ability to cross the BBB. Alternatively, subcutaneous allografts are also 

used, but while these enable investigation of immune responses, they do not resemble GBM tumours 

as closely.[62] Delivery of particle-based therapies to in vivo models is similar to delivery to patients, 

with intravenous delivery being the predominant choice (Fig. 4). Intranasal delivery is an interesting 
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approach to deliver particles without the need to cross the BBB, which is directly translatable to 

patient treatment. On the other hand, intracranial or intratumoral injections are also used, allowing 

investigation of the particles in the tumour environment with an immune system. 

Previous reviews have focused on the role of nanoparticles in visualising GBM, the use of 

immunotherapy and nanoparticles as separate methods for treating GBM, and the role novel particle 

design in immunotherapy without the ability to cross the BBB.[63–65] This review investigates recent 

literature from the past 3 years combining particle technologies and immunotherapy together to 

create BBB-permeable systems for GBM immune modulation. Key sections will focus on different 

types of immunotherapy, including checkpoint inhibitors, immune signalling pathways, and strategies 

for using heat to drive immune responses. Finally, some of the more novel approaches to driving the 

immune system towards GBM tumour clearance will be considered. 
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2.1 Immune Checkpoint Inhibitors 

A promising therapy for many cancers are immune checkpoint inhibitors (ICIs). The immune system is 

naturally regulated by set checkpoints to ensure that T cells do not attack the body’s own cells. If a T 

cell binds to an immune checkpoint protein on another cell, this turns off signals in the T cell to attack 

it. Unfortunately, cancers hijack this mechanism by highly upregulating immune checkpoint proteins, 

such as PD-L1 and CTLA-4, inhibiting clearance by the immune system (Fig. 2). ICIs are designed to 

overcome this by preventing binding between immune checkpoint proteins during cell-cell 

interactions, enabling immune activation and clearance.[66] Currently, the only FDA approved ICIs are 

antibodies against CTLA-4, PD-1 or PD-L1.[67]  

ICIs have been trialled for GBM, however success has been severely limited, especially in trials using 

monotherapies as opposed to combination therapy.[68,69] One possible explanation is that GBM 

patients express high levels of checkpoint proteins alongside depletion of tumour infiltrating 

lymphocytes – causing a degree of immunosuppression that cannot be overcome through 

conventional checkpoint inhibitor therapies.[69,70] However, the high levels of checkpoint protein 

expression in GBM suggest that if immunosuppression is overcome, ICIs have the potential to be 

successful. 

Through conjugation of nanoparticles to immune checkpoint inhibitors, three main benefits can be 

achieved; improved delivery of ICIs to the brain, targeted delivery of nanoparticles to the tumour, and 

increased localised concentration of ICIs. Improved delivery of ICIs is observed when conjugated to a 

poly(β-malic acid) nanoparticle, or when un-conjugated but injected alongside nanoparticles able to 

disrupt the BBB and increase accumulation at the tumour site.[71,72] Targeting of the particles 

themselves can also be improved through conjugation to ICIs, given that GBM tumours express high 

levels of checkpoint proteins, enabling delivery of additional therapeutics alongside ICIs within a single 

particle. One study trialled this with a lipid nanoparticle functionalised with PD-L1 antibodies 

encapsulating the cyclin-dependent kinase (CDK) inhibitor dinaciclib, ensuring the cargo was only 

delivered to immunosuppressive cells to alleviate the immunosuppression.[73] Unfortunately, this 

therapy was not shown to cross the BBB, so it is unclear how much PD-L1 functionalisation is able to 

improve nanoparticle targeting.[73] Finally, as each of these ICI-focused studies gave a reduction in 

tumour volume and induction of an anti-tumour immune response, it is possible that the improved 

accumulation of ICIs in the brain was enough to overcome the immunosuppression, unlike in patient 

trials where ICIs are not used in combination with particle delivery systems.[71–73] 

ICIs are a promising avenue for stimulating the immune system to treat cancer and have shown high 

success rates in certain solid tumours.[74] However, they carry the risk of over-activating the immune 
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system and driving immune-related adverse events (irAEs) that manifest as autoimmune disorders, 

including colitis, encephalitis, myocarditis and even the development of type I diabetes.[66,75] The 

severity of autoimmune reactions varies between both patients and the type of ICI given, with 

approximately 10-20% of all patients given ICIs experiencing severe high grade irAEs. Additionally, 

roughly 40% of patients developed chronic irAEs, regardless of initial irAE severity, following anti-PD-

1 therapy for melanoma.[76] The use of particle delivery systems to ensure selective ICI targeting may 

reduce the overall risk of developing autoimmunity, however, if used for the treatment of GBM this 

would not remove the risk of neurological irAEs. 

 

2.2 Cytokines and Cell Signalling 

2.2.1 General Inflammation Pathways 

One clear method to drive inflammation is to target existing signalling pathways, using particle 

therapies to deliver proteins and antibodies to improve their bioavailability and stability. This can 

involve antibodies that specifically bind to tumour cells without checkpoint inhibition; such as using 

anti-EGFR antibodies to bind cancer cells to drive antibody-dependent cell-mediated cytotoxicity 

(ADCC).[57] Rizzuto et al. have shown that mAb-conjugated ferritin nanoparticles can cross an in vitro 

model of the BBB, but this delivery system has not yet been trialled in an in vivo model with a 

functional immune system to confirm whether ADCC is possible in an immunosuppressed GBM 

model.[57] Alternatively, simple delivery of cytokines can also be used to activate inflammation, such 

as delivery of chemokine CCL21 to recruit lymphocytes and dendritic cells to the tumour site.[62] 

However, delivery of cytokines relies on being able to ensure activity is limited to the target site – 

meaning therapies either need to be directly administered to the tumour, or particles need to be 

designed to encapsulate the protein cargo and only release it once within the tumour. Voth et al. 

demonstrated that it is possible to encapsulate CCL21 within a vault-protein nanoparticle (Fig. 5), 

however cytokine release was not designed to be limited to the tumour site, leading to the use of 

intratumoral injection.[62] Given the location of GBM, direct administration is potentially a highly 

invasive process, and systemic delivery risks off-target inflammation, thus alternative approaches are 

more commonly favoured. 
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Figure 5. Vault Particle Protein delivery of CCL21 cytokine. Assembly of Vault Protein from multiple major 

vault proteins (MVP) encapsulating cytokine CCL21 conjugated to vault interacting domain (INT), stable 

transportation and release of CCL21 at higher concentration gradients at GBM site. CCL21 interaction with 

CCR7 receptor induces chemoattractive response for dendritic cells, lymphocytes, and NK cells. Created with 

BioRender.com. 

 

Therapeutic delivery of nanoparticles encapsulating RNA is a common solution to activating 

inflammation without the need for bulky proteins, while providing a protective coating to the nucleic 

acids to prevent clearance before reaching the target cells (Fig. 6). Nanoparticles are commonly made 

using cationic materials such as poly(β-amino ester) (PbAE) to better incorporate the negatively 

charged RNA. PbAE encapsulation reduces leakage, as the cargo is released upon nanoparticle 

degradation following endocytosis within the target cell itself (Fig. 7).[77,78] The RNA delivered can 

vary between simple mRNAs for transcription factors that promote inflammatory gene expression, or 

short interfering RNA (siRNA) to downregulate anti-inflammatory signalling and alleviate 

immunosuppression.[77–79] 

 

https://biorender.com/
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Figure 6. RNA Delivery systems. Nanoparticle delivery vehicles for the transportation of RNA to a desired 

target. Nanoparticles composed of Poly (β-amino esters) (1) contain a tertiary amine with pKa ~ 7 that can 

be protonated under physiological conditions; these particles can accommodate negatively charged mRNA 

until endocytosis into the target cell. Cationic nanoemulsions (2) composed of: DSPE-PEG, DOPE, and 

triglycerides form nanoparticles and in the presence of amphiphilic positively charged tertiary amines attract 

and hold negatively charged mRNA until release at a target site. Azide (N3) containing polycaprolactone (PCL) 

conjugated to short ssDNA via SPAAC click chemistry gives a cross-linked nucleic acid nanogel (3) which 

assembles in the presence of miRNA155-L containing end-caps complementary to the PCL ssDNA. The gel can 

be encapsulated within an erythrocyte membrane and modified with HA2 surface protein to enhance 

endosomal escape and M2pep for specific targeting of microglia. Created with BioRender.com  

 

One key consideration for intracellular cargo delivery (Fig. 7) is to ensure that the cargo is not 

degraded through the endosome-lysosome pathway following particle uptake. A solution to this is to 

modify the surface of particles to aid endosomal escape.[79–81] One study has approached this by 

taking advantage of viral mechanisms for endosomal escape to create a highly specialised 

nanoparticle.[79] In this study (Fig. 6), miRNA was cross-linked with a complementary DNA-grafted 

polycaprolactone brush to create a nanogel particle coated by an erythrocyte membrane to improve 

circulation time, with influenza virus protein HA2 and microglial targeting peptide M2pep conjugated 

to the surface.[79] HA2 enables endosomal escape while M2pep ensures the particles are only 

targeted toward and engulfed by microglial cells, ensuring specific cargo delivery. An alternative 

system developed by the Karathanasis lab uses silica nanoparticles functionalised with primary and 

secondary amines to drive endosomal escape.[80,81] However, rather than using RNA to drive 

inflammation, cyclic diguanylate monophosphate (cdGMP) is delivered to activate stimulator of 

interferon genes (STING), a protein normally responsible for responding to infection by intracellular 

pathogens and capable of activating a strong immune response.[80] 

https://biorender.com/
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Figure 7. Cellular Uptake of Particle Delivery Systems. To exert a cellular effect, particle delivery systems can 

operate in a variety of ways. Endocytosis of particles (1) enables delivery of cargo intracellularly, but risks the 

cargo being degraded in the endosomal-lysosomal pathway unless able to escape the endosome. If the 

particle delivery system is designed to result in interactions with plasma membrane receptors (2), this can be 

done through surface functionalisation with the corresponding ligand, or through lysis of the particle in the 

extracellular space to release cargo able to bind the target receptor. Alternatively, the delivery system may 

degrade and release a molecule able to diffuse across the plasma membrane to reach an intracellular target. 

Finally, functionalisation of a particle by containing it within a cell membrane (3) could allow particle delivery 

through membrane fusions, allowing the particle material or any cargo to impact signalling from within the 

cell. Created with BioRender.com 

 

Broad activation of common inflammatory pathways can be useful to overcome immunosuppression; 

however, excessive inflammation is also detrimental. Damage of healthy tissues, chronic 

inflammation, and even increased infiltration of immune cells within a confined space like the skull 

could be dangerous. Considering the unique immune microenvironment present in GBM, targeted 

inhibition of immune pathways known to be upregulated in GBM may be a more suitable approach. 

 

2.2.2 Glioblastoma-Specific Signalling 

A variety of immune regulatory pathways are overexpressed in GBM, and have been reviewed in 

various publications.[82–85] These pathways provide interesting therapeutic targets for potentially 

https://biorender.com/
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driving tumour clearance. Here we discuss some of the pathways targeted through the use of particle 

delivery systems. 

STAT3 is upregulated in many cancers, and has been known for some time to be overexpressed in 

GBM patients, with increased levels of activated STAT3 correlating with poorer prognoses.[86] Given 

that STAT3 is involved in many pro-tumoral functions; including angiogenesis, proliferation, invasion, 

metastasis, and immune suppression; this makes it an ideal target for anti-cancer therapies.[87] Small 

molecule inhibitors have been trialled in intracranial animal models of GBM, however studies were 

either unsuccessful due to poor molecule permeability, or were promising but relied on direct 

intracranial injections for successful drug delivery, an unfavourable route for clinical 

therapeutics.[88,89]. Hence, the Castro lab have developed a nanoparticle to improve delivery of 

STAT3 siRNA to downregulate STAT3 signalling and drive tumour clearance.[90,91] A synthetic protein 

nanoparticle, made of human serum albumin (HSA) and oligo(ethylene glycol) loaded with STAT3 

siRNA and cell-penetrating peptide iRGD, was shown to be: capable of crossing the BBB; infiltrating 

the tumour; inhibiting tumour growth; and significantly improving survival.[90] This highlights how 

promising STAT3 therapies could be for GBM when particle delivery systems are employed to improve 

BBB permeability.  

Long non-coding RNA (lncRNA) LSINCT5 expression has also been observed in other cancers, with 

higher expression levels correlating to reduced survival rates.[92] LSINCT5 has been hypothesised to 

function by sequestering miRNA molecules, and has been linked to repression of miRNA-451 

expression in glioma cells, which can increase tumour cell survival and migration.[93–95] From this, 

Jin et al. hypothesised that delivering siRNA against LSINCT5 (siLSINCT5) within a poly(amidoamine) 

(PAMAM) dendrimer nanoparticle would exhibit anti-tumour properties.[96] Particles were also 

conjugated to anti-NKG2A antibodies (aNKG2A) - another immune checkpoint protein - to counteract 

the immunosuppressive microenvironment, as well as cell-penetrating peptide tLyp-1 to improve 

tumour-specific targeting.[96] Particles were able to cross the BBB, inhibit LSINCT5 expression, and 

drive an anti-tumour immune response. However, no comparison was made between the effects of 

aNKG2A-tLyp-1 nanoparticles and aNKG2A-tLyp-1-siLSINCT5 nanoparticles, preventing conclusions as 

to whether the successes seen are due to the combination therapy, or predominantly reliant on the 

presence of NKG2A antibodies.[96] 

Defects in mitochondrial function are found across several diseases, including cancers, and can lead 

to alterations in metabolism, proliferation, apoptosis, and even immune responses.[97,98] 

Furthermore, it has been observed that the activation states of TAMs and microglia are regulated by 

mitochondrial metabolism; high expression levels of the mitochondrial transport protein (TSPO) are 
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observed in TAMs and are linked to poorer prognoses in GBM patients.[99–101] However, it is still 

debated as to what specific role TSPO plays in immune regulation, with conflicting evidence as to 

whether TSPO promotes a pro- or anti- inflammatory phenotype in TAMs, overall indicating a complex 

relationship between TSPO and immune regulation.[99] Nevertheless, as TSPO expression is known to 

result in poorer GBM prognoses this makes it an attractive target for therapies.[101] In one study, 

Sharma et al. developed a PAMAM dendrimer nanoparticle conjugated to TSPO ligand DPA, improving 

the normally poor delivery of mitochondrial-targeting compounds.[102,103] It was shown that DPA 

delivery upregulated an anti-tumour response, with specific targeting towards TAMs in an in vivo 

orthotopic model of GBM.[102] TAM-specific targeting was achieved through the use of the PAMAM 

dendrimer, with this and previous studies indicating that PAMAM nanoparticles can be used to ensure 

TAM-specific drug delivery.[102,104,105] This research highlights that even without full 

understanding of GBM-associated immune regulators like TSPO, it is possible to target them to drive 

an anti-tumour response.[102] 

Stimulation of general inflammation and GBM-associated pathways provides the opportunity to drive 

a robust immune response, while avoiding the risks of stimulating autoimmunity through the removal 

of immune checkpoints like ICIs. However, care will still need to be taken to ensure excessive 

inflammation is limited, and that inflammation is limited to the target site. GBM specific approaches, 

which often rely on downregulating anti-inflammatory pathways rather than upregulating 

inflammation, may provide more control over other general approaches. Additionally, by pairing 

immune manipulation with particle delivery systems, the risks of off-target inflammation can be 

limited, creating a promising avenue for reversing GBM immunosuppression. 

 

2.3 Hyperthermal Therapy 

Hyperthermal therapy is the process of heating a tissue to 40-45 °C to induce cell death, as well as 

promoting pro-inflammatory immune responses and sensitisation towards chemo- and radio- 

therapy.[106,107] This process is largely thought to be driven by heat shock factor 1 (HSF-1), a 

temperature-sensitive transcription factor that regulates expression of various cytokines and other 

heat shock proteins.[107,108] The exact mechanisms surrounding heat-related immune activation are 

not fully understood, but research has shown that temperatures from 38-45°C alter immune cells to 

increase infiltration and cytokine release, drive antigen presenting cell maturation towards 

inflammatory phenotypes, and increase CD4+ T cell differentiation.[106,107] Alongside changes to 

immune cells, hyperthermal therapy also affects cancer cells; temperatures above 41°C drive 

apoptosis, and even necrosis, due to increased cellular stress, reduced DNA damage repair and 
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replication, and promotion of ‘eat me’ signals.[106] Overall, this increases immune-mediated tumour 

clearance via upregulation of inflammation alongside increased exposure of tumour antigens due to 

cancer cell death.[106–108] 

Hyperthermal therapy has been considered as a potential treatment for cancer for many years, with 

a noticeable spike in research reported in PubMed between the mid-80s to early 90s. However, at the 

time this approach was limited by ongoing issues that were not overcome, including: invasive 

monitoring; difficulties heating tumours deeper within the body; and a lack of tumour-specific 

targeting.[109,110] Questions have also been raised since as to the rationale behind hyperthermal 

therapy, and the validity of clinical trials performed at the time.[111] Nevertheless, recent 

advancements in particle therapies have led to improvements in the field of hyperthermia, as well as 

the development of two branches of hyperthermal therapy; photodynamic and photothermal 

therapy, and magnetic hyperthermia.[112–114]  

2.3.1 Photodynamic and Photothermal Therapy 

Photodynamic and photothermal therapies rely on molecules that can be photoactivated by a specific 

band of light, usually a near infrared (IR) light source, to specifically target abnormal cells (Fig. 8). 

Photodynamic therapy involves photosensitiser drugs which generate reactive oxygen species (ROS) 

when exposed to near IR light through a series of photochemical reactions, resulting in oxidative stress 

in cancer cells.[115] Similarly, in photothermal therapy, a photothermal agent converts the near IR 

light source to vibrational energy and generate heat leading to apoptosis in target cells at the site of 

interest.[115] Together, these effects drive tumour cell death and acute inflammation, an appealing 

outcome for the treatment of glioblastoma.[116,117] In addition to this, near infrared light appears 

able to penetrate through intact skin and skull of mice and humans, suggesting that it has potential 

for use in glioblastoma treatment.[118,119] Delivery of photosensitive drugs conjugated to 

nanoparticles, and even the creation of photosensitive nanoparticles, are an attractive approach to 

ensure targeted delivery. Recent research has shown that indocyanine green conjugated to liposomal 

nanoparticles can accumulate in tumours and drive a strong immune response by inducing heat-shock 

protein 70 (HSP70).[120] In terms of photosensitive nanoparticles, a collaboration between Danish 

and Chinese researchers has developed bradykinin-conjugated aggregation-induced-emission (AIE) 

luminogen nanoparticles; using bradykinin to improve tumour permeation, while AIE-active 

luminogens form the bulk of the particle and act as a photo-inducible agent able to drive ROS 

production.[121] These studies show promising results and not just in the resulting immune 

responses; both nanoparticle systems were delivered intravenously to an orthotopic glioma model, 

highlighting the ability of the nanoparticles to cross the BBB and localise in the tumour.[120,121]  
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Researchers at Duke University, USA have developed a photothermal nanotherapy using spiked gold 

‘nanostar’ particles.[122] Unlike traditional photodynamic therapies that rely on the production of 

reactive oxygen species (ROS) and heat, these gold nanoparticles only produce heat, but are delivered 

alongside anti-PD-L1 antibodies to enable a stronger immune response. Interestingly, following 

hyperthermal treatment and long-term survival, mice rechallenged with tumour cells displayed 

immunological memory.[122] Unfortunately, this was trialled in a subcutaneous glioma model, so it is 

unclear if the gold nanoparticles and antibodies can cross the BBB, and whether they would specifically 

accumulate at the tumour site.[122] 

 

Figure 8. Photothermal effect. (1) Jablonski diagram illustrating the photothermal effect. NIR photon excites 

an energy transition of electrons in the valence band (VB) to an excited vibrational level in the conductive 

band (CB), leaving behind positively charged “holes”. Shortly after, electrostatic interactions between excited 

electrons and “holes” recombine, releasing the absorbed energy as lattice vibrations and heat. The localised 

heat energy produced can then cause thermal degradation with oxygen to produce ROS. (2) Depiction of 

photothermally active molecule indocyanine green undergoing photothermal therapy and photosensitiser 

aggregation-induced emission (AIE) molecules in photodynamic therapy absorbing NIR light and producing 

heat and ROS to increase inflammatory response in GBM to drive tumour regression. Created with 

BioRender.com 

 

2.3.2 Magnetic Hyperthermia 

Magnetic hyperthermia relies on the use of magnetic particles (often made of superparamagnetic iron 

oxide), which produce heat when exposed to an alternating magnetic field, killing tumour cells and 

driving a localised immune response.[112,114] Beneficially for glioblastoma, alternating magnetic 

fields are deeply penetrating, and can non-invasively drive magnetic hyperthermia in brain 

tumours.[51] 

https://biorender.com/
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Recent research has shown that it is possible to drive an inflammatory immune response through 

magnetic hyperthermia; however, these studies have used either in vitro models, which do not 

replicate the complexity of the tumour microenvironment, or non-orthotopic in vivo models, making 

it unclear whether particles could successfully cross the BBB.[55,123] Nevertheless, it is possible that 

not all particles need to be able to cross the BBB. In the case of magnetic hyperthermia, metal 

nanoparticles are difficult to clear from the body and cannot biodegrade like other nanoparticle 

materials – but they can perform multiple rounds of therapy if they are embedded at the tumour 

site.[123,124] As standard GBM treatment already involves initial surgical resection, long-term 

nanoparticle therapies could also be implanted at this stage.  

Promisingly, a small pre-trial has been conducted in six recurrent glioblastoma patients, whereby 

superparamagnetic iron oxide nanoparticles were implanted directly into the tumour resection site 

before treatment with an alternating magnetic field.[124] The therapy induced a strong pro-

inflammatory immune response across all patients, with increased T cell and macrophage infiltration, 

cytokine expression, and tumour necrosis.[124] However, cerebral oedema formed around the 

nanoparticles following treatment, with two-thirds of patients requiring surgical removal of the 

particles. Additionally, while median overall survival for patients treated at their first recurrence was 

23.9 months, medial overall survival of the cohort was only 8 months.[124] Significant inflammation 

to the degree observed here may prove to be too unregulated to clear tumours safely, potentially 

highlighting the need for more controlled induction of inflammation for GBM treatment. 

Hyperthermal therapy enables a strong immune response, and the ability to ensure localised 

treatment through a two-point system of particle localisation and targeted irradiation. Some issues 

remain for the development of thermo-stable materials for photodynamic and photothermal therapy, 

and the degree of heat and immune activation suitable to drive inflammation without significant side 

effects.[115,124] 

 

2.4 Anti-inflammatory Approaches 

Interestingly, approaches to reduce inflammation are also being trialled in GBM.[125,126] GBM is 

largely agreed to be immunosuppressive, however several factors suggest that simply trying to 

increase inflammation may not be the correct approach.[20–23] Variation in immune 

microenvironments between GBM subtypes, and even down to individual mutations, suggest that 

more immunosuppressed tumours show improved survival.[5,8,10,33] In order to reduce 

inflammation, rather than through the use of existing drugs, recent research has focused on the 
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construction of nano- and micro-particles that have anti-inflammatory properties; either algal extracts 

or dendritic polyglycerol sulfate (dPGS) formed into micro- and nano-particles.[125,126] While both 

approaches showed reductions in tumour growth in cancer cell culture models, this may be due to 

additional functions of algal extracts and dPGS beyond reducing inflammation, such as anti-

proliferative effects.[125,126] Additionally, neither approach has been trialled in an in vivo model with 

a functional immune system, which may respond differently to anti-inflammatory signalling than GBM 

cancer cells themselves.[125,126] 

Some debate remains on the effects of immune suppression versus activation in GBM; immune 

mediators with traditionally inflammatory functions and others with both inflammatory and anti-

inflammatory roles can be seen in GBM.[82–84] Additionally, mesenchymal GBM has increased 

immune infiltration and poorer prognoses, while tumours with IDH1 mutations show reduced immune 

infiltration and improved prognoses.[8,10,11,33] Nevertheless, anti-inflammatory treatment 

approaches are unlikely to be the best solution. GBM cancer cells purposefully drive 

immunosuppression to enable immune escape and tumour survival, while immune cell recruitment 

signalling pathways - driven by traditionally ‘inflammatory’ cytokines and chemokines – increase the 

number of anti-inflammatory cells, such as Tregs and myeloid-derived precursor cells.[127,128] 

Furthering immunosuppression is likely to be more beneficial to the tumour in the long term, unless 

careful therapeutic design enables selective inhibition of detrimental inflammatory pathways, such as 

angiogenesis and increased cellular invasion, without promoting further immunosuppression.[83,84] 

 

3. Novel Approaches (Case Studies) 

Finally, several novel approaches to tackling specific challenges in treating GBM through immune-

mediated means have been conducted (Fig. 9). 

3.1 Hypoxia and Antigen Presentation 

A key aspect of solid tumours is the presence of hypoxia, which in the case of GBM also contributes to 

polarising TAMs towards immune-suppressive M2 phenotypes.[30] Additionally, hypoxia can limit the 

effects of certain therapies, such as photodynamic therapy, due to their reliance on the presence of 

oxygen to generate ROS.[116,117,129] A novel approach to solve these problems is the development 

of light-responsive antigen-capturing oxygen generators (LAGs), used to form micelles loaded with the 

anti-cancer drug Nutlin-3a.[129] Together, this particle delivery system is able to: drive oxygen 

production from hydrogen peroxide present in hypoxic environments, reversing hypoxia; release an 
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anti-cancer drug in response to light, driving cancer cell death; and capture antigens released by dying 

cancer cells, promoting antigen presentation (Fig. 9a).[129]  

This therapy poses an interesting and multi-faceted approach to driving tumour clearance; however, 

there are some challenges if this is to become a successful clinical therapy. In this paper, the LAG 

micelles have only been trialled in a spheroid model of GBM that avoids two key issues: BBB transport 

and light depth penetration.[129] As the delivery system is a 100-150 nm diameter micelle, it is likely 

that it would successfully reach the brain via an intranasal delivery route, though may require 

additional surface modification to improve delivery that would further complicate particle 

design.[129–131] LAGs are currently activated using a 630 nm wavelength, which has some 

considerable variation in reported depth penetration through cranial tissue ranging from 0.4-3.0 

cm.[132–134] For the treatment of GBM, it is unlikely that this degree of depth penetration would be 

sufficient to reach the tumour mass, suggesting that surgical implantation of fibre optics during 

tumour resection may be required to achieve LAG activation. Intracranial implantation of fibre optics 

is an incredibly rare procedure in humans, and is instead limited to in vivo murine models.[135,136] 

To avoid this, if the particle delivery system was modifiable to respond to alternative wavelengths of 

light – although debate remains on which wavelength of light has the highest depth penetration 

through cranial tissue – it may be possible to drive LAG activation without invasive surgeries.[137,138] 

3.2 Macrophage-Specific Targeting 

As discussed in Section 1.2, TAMs are crucial to tumour microenvironment regulation and can 

comprise up to 30% of the tumour volume.[17–19,21] This makes them a promising target for anti-

GBM particle therapies, but requires some additional modification of particle delivery systems to 

ensure TAM- and microglial-specific targeting. One approach investigated the effect of lipid 

nanoparticle size and surface charge on uptake into tumour cells, TAMs and microglia, and T cells.[139] 

It was observed that particles with a positive surface charge and 100 nm diameter showed the greatest 

uptake in macrophages.[139] Promisingly for translation to clinic, while small, positively charged 

particles may struggle to cross the BBB, the added positive charge will not hinder intranasal 

uptake.[139,140] Another approach has been to modify dendrimer-based nanoparticles with the 

addition of sugar moieties to increase cellular uptake, taking advantage of the increased expression 

of sugar transporters on TAMs and microglia during GBM.[141] Conjugation of glucose moieties onto 

dendrimers was found to be the most successful approach to increase uptake of nanoparticles into 

TAMs and microglia, while conjugation with galactose drove increased tumour cell uptake (Fig. 

9b).[141] Together, these approaches highlight the modifiable nature of particle delivery systems to 

enable immune cell-specific targeting in GBM. Further research can now focus on screening different 
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immune-stimulating compounds to use alongside these particle delivery systems for TAM-specific 

targeting in GBM treatment.   

3.3 Targeting TMZ-Resistant Cells  

One major issue in treating GBM is chemotherapeutic resistance, where expression of DNA repair 

protein O6-methylguanine DNA methyltransferase (MGMT) is highly upregulated following repeated 

courses of TMZ, leading to resistance.[142] This has led to one recent paper using a particle delivery 

system to overcome TMZ resistance through targeted Zoledronate (ZOL) delivery (Fig. 9c).[143] ZOL 

has a different mechanism of action compared to TMZ and inhibits the post-translational modification 

of proteins, enabling ZOL to effectively stimulate apoptosis in MGMT-overexpressing cells.[144,145] 

Additionally, ZOL shows increased sensitivity and toxicity towards macrophages, which Qiao et al. 

hypothesised would enable clearance of tumour cells and TAMs, alleviating 

immunosuppression.[143,146] Poly(propylene glycol dithiodipropionate) nanoparticles were 

developed to encapsulate ZOL, which were coated in the cell membrane of BV2 microglial cells.[143] 

Microglial cell membrane coating facilitated nanoparticle recruitment via chemoattractants CX3CL1 

and CSF-1, factors abundant in GBM tumours.[84,143] Once recruited to the tumour, the 

nanoparticles release ZOL in the high glutathione environment, due to the nanoparticle polymer 

composition.[143] Overall, it was found that nanoparticles were actively recruited to the tumour, and 

resulted in apoptosis of GBM cells as well as TAMs, increasing the proportion of pro-inflammatory M1 

phenotype TAMs.[143] This therapy is a promising avenue for treating TMZ-resistant patients and 

appears to be at a promising stage to begin pre-clinical trials. 

3.4 Glial Scarring  

An additional aspect of GBM is its aggressive invasiveness; it is almost impossible to entirely remove 

GBM tumours through surgical resection alone due to the extensive spread of cancer cells into 

surrounding healthy brain tissue.[147] This leads to tumour recurrence at both adjacent and distant 

sites within the brain.[147] One unusual approach to tackling this problem was to hijack the natural 

formation of glial scar tissue in response to injury in order to ‘wall-in’ tumour cells, whereby the 

presence of chondroitin sulfate proteoglycans (CSPGs) within scar tissue repels tumour cells from 

passing through it.[148] By functionalising the surface of gold nanoparticles with poly(ethylene glycol) 

(PEG) and peptides derived from zymosan, a known stimulant of reactive gliosis and glial scarring, 

Saxena et al., were able to generate a pro-inflammatory nanoparticle capable of stimulating glial 

scarring.[148,149] Additionally, when nanoparticles were delivered intravenously to tumour-bearing 

rats, scar tissue developed around the tumour site, with tumours found to be significantly smaller with 

reduced growth (Fig. 9d).[148] Overall these results suggest that generation of a physical barrier 
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through upregulated inflammation may be able to reduce GBM invasiveness. Further understanding 

of targeting mechanisms to ensure scar tissue development is limited to the tumour periphery would 

be required before translation to human trials. Monitoring animals over a longer period is also 

required to establish whether containment was successful and that tumours do not develop at distant 

sites post-scarring. Additionally, as this system appears to limit tumour size via a physical barrier, 

studies employing this particle system alongside additional therapeutics to inhibit tumour 

proliferation at the cellular level may be able to produce further tumour regression. Overall, this study 

highlights an interesting concept to limit GBM tumour growth and invasion, but requires considerable 

further research and understanding prior to translation to clinic.  
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Figure 9. Case Studies. (1) DSPE-based nanoparticle fused to catalase held together by a photocleavable thioketal 

linker cleaved at the GBM tumour site by irradiation at 630 nm, uncoupling the enzyme catalase that can alleviate 

the hypoxic conditions deep within the GBM by oxidising H2O2 into O2 meanwhile releasing a payload of drugs: 

Nutlin-3a and Protoporphyrin IX (PpIX). (2) Dendrimer nanoparticle labelled with Cy5 and bound to sugars 

through CuAAC chemistry to target defined sites in GBM. Ubiquitous hydroxyl (OH) groups target macrophages. 

Glucose can interact with glucose transporters in TAMs and galactose interacts with galectin surface receptors 

in tumour cancer cells, leading to accumulation of respective nanoparticles at these sites, imaged by confocal 

microscopy. (3) Zoledronate (ZOL) specific delivery to GBM via encapsulation into disulfide-based poly(propylene 

glycol dithiopropionate) (PDP) nanoparticles enclosed in a BV2 macrophage membrane containing 

chemoattractant receptors CX3CR1 and CSF-1R which promote delivery to GBM site. High concentrations of 

glutathione (GSH) in the tumour microenvironment (TME) drives disulfide exchange and decomposition of the 

nanoparticle, releasing ZOL into tumour. (4) Zymosan peptide-functionalised gold particles stimulate reactive 

gliosis, causing the formation of CSPG-containing scar tissue around the tumour mass, restricting tumour growth 

and invasiveness. Created with BioRender.com 

https://biorender.com/
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4. Conclusions and Future Perspectives 

GBM is a disease defined by its complex immune microenvironment, which despite being an obstacle 

to treating GBM, may be the key to developing successful treatments in the future. Conflicting 

evidence exists as to whether driving inflammatory or anti-inflammatory immune responses would be 

beneficial for GBM treatment; lower grade and IDH-mutant tumours were found to have more 

immunosuppression but improved prognoses, while other immunosuppressive factors like CD163 and 

hypoxia showed reductions in survival.[5,13,22,31] One explanation is the dual role of many cytokines 

in both inflammation and immunosuppression; pro-inflammatory cytokine interferon gamma (IFN-γ) 

and can be beneficial to treat tumours by increasing MHC expression and cancer cell apoptosis, but 

also drives PD-L1 expression, benefiting the tumour.[22] Additionally, excessive inflammation is 

detrimental for any tissue, healthy or cancerous. This is even more critical within the brain; both in 

terms of destroying healthy cells that cannot regenerate, and as the skull creates a confined space 

where inflammation and immune cell infiltration increasing brain volume can lead to dangerous levels 

of pressure.[22] For immunotherapies to successfully treat GBM, a carefully balanced immune 

response able to alleviate immunosuppression while avoiding excessive inflammation is required.  

For the future treatment of GBM, reversing immunosuppression rather than driving general 

inflammation is likely to be the safest and most successful approach. This would prevent the tumour 

from using immunosuppressive pathways to drive proliferation and immune escape, without 

excessive inflammation and oedema that risks further damage. The recent success of ICIs in colorectal 

cancer further promotes the use of therapies that enable the immune system to drive tumour 

clearance.[150] However, as ICIs have had limited success in GBM, possibly due to the sheer degree 

of immunosuppression present in GBM, incorporating an additional element to promote mild 

inflammation may be the solution.  Particle delivery systems may be the solution required to create 

this type of multi-faceted approach. Based on the research discussed in this review, a particle delivery 

system loaded with a mild immune-stimulant and surface functionalised with an ICI to improve 

particle-to-tumour targeting and to block excessive checkpoint protein expression would be ideal. 

Using a polymer-based material for the bulk of the particle would enable ICI conjugation directly to 

the surface, as well as enabling the exploitation different polymer properties to control the conditions 

that drive polymer degradation. For example, the development of PDP nanoparticles that decompose 

in high glutathione environments.[143] To drive mild inflammation, it would be difficult to achieve 

intracellular delivery of mRNA alongside ICI conjugation within the same particle, so small molecule 

drugs, such as toll-like receptor (TLR) agonists, could be encapsulated to stimulate 
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inflammation.[151,152] Alternatively, use of hyperthermia is also able to prime the immune system 

towards inflammation. While hyperthermal therapy appears to drive too strong a response to be safe 

in GBM, fever-mimicking hyperthermia between 37-40°C may be enough to improve ICI efficacy 

without excessive damage.[106,107] By creating a particle with a superparamagnetic iron oxide core, 

coated with polymer, and surface functionalised with an ICI, it may be possible to limit toxicity with 

particle targeting, promote mild inflammation following alternating magnetic field exposure, and limit 

GBM immunosuppression to enable immune-driven tumour clearance. 

Overall, combining immunotherapies with particle delivery systems holds considerable promise for 

the future of GBM treatment. 
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