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REVIEW ARTICLE
Metastasis

The fibrotic and immune microenvironments as targetable
drivers of metastasis
Luke Boulter1, Esme Bullock2, Zeanap Mabruk2 and Valerie G. Brunton 2

Although substantial progress has been made over the past 40 years in treating patients with cancer, effective therapies for those
who are diagnosed with advanced metastatic disease are still few and far between. Cancer cells do not exist in isolation: rather, they
exist within a complex microenvironment composed of stromal cells and extracellular matrix. Within this tumour microenvironment
exists an interplay between the two main stromal cell subtypes, cancer-associated fibroblasts (CAFs) and immune cells, that are
important in controlling metastasis. A complex network of paracrine signalling pathways between CAFs, immune cells and tumour
cells are involved at multiple stages of the metastatic process, from invasion and intravasation at the primary tumour site to
extravasation and colonisation in the metastatic site. Heterogeneity and plasticity within stromal cell populations also contribute to
the complexity. Although many of these processes are likely to be common to a number of metastatic sites, we will describe in
detail the interplay within the liver, a preferred site of metastasis for many tumours. A greater understanding of these networks
provides opportunities for the design of new therapeutic approaches for targeting the metastatic disease.

British Journal of Cancer https://doi.org/10.1038/s41416-020-01172-1

BACKGROUND
Although significant advances have been made over the past 40
years in the treatment of cancer, most patients with advanced
metastatic disease are faced with the harsh reality that no
effective treatments currently exist. As such, the majority of
cancer-related deaths are associated with metastatic spread.1,2

The key to advancing new treatment options is a greater
understanding of the complex network of biological processes
that control the metastatic process.
Metastasis occurs in several stages, and involves the accumula-

tion of genetic, epigenetic and metabolic alterations in tumour
cells, alongside complementary changes in, and signalling from,
the tumour microenvironment (TME).2,3 To initiate the first step of
the metastatic cascade—invasion into the local stroma—tumour
cells must become motile and invasive, which requires changes in
cell–cell and cell–extracellular matrix (ECM) contacts as well as
reorganisation of the ECM. Tumour cells can then intravasate,
breaking through the basement membrane of the vasculature or
into lymphatic vessels. Once in the circulatory or lymphatic
system, the newly defined circulating tumour cells (CTCs) must
survive exposure to mechanical force and the immune system.
CTCs can become trapped in small circulatory beds in the lungs
and liver, for example—common metastatic sites for multiple
cancer types—where they can adhere to endothelial cells and
extravasate into the surrounding tissue. Tumour cells in metastatic
sites are known as disseminated tumour cells (DTCs) and can
either proliferate to form micrometastases or enter a dormant
state, from which they can be ‘awakened’ after long periods of
latency. The final step in the metastatic cascade, colonisation,

occurs when DTCs proliferate to form clinically relevant metas-
tases (Fig. 1). Whereas tumours used to be thought of as a clonal
population of one malignant cell type, we now know that they
behave more like a tissue, with heterogeneous malignant cells co-
operating with multiple different stromal cell types and ECM
components in the surrounding TME. Cellular components of the
TME include cancer-associated fibroblasts (CAFs), endothelial cells,
adaptive and innate immune cells, and non-transformed epithelial
cells, with ECM proteins providing physical support and orches-
trating intercellular cues. The TME contributes to all the
recognised hallmarks of cancer: sustaining proliferative signalling,
evading growth suppressors, resisting cell death, enabling
replicative immortality, inducing angiogenesis, and activating
invasion and metastasis.4 When Welch and Hurst3 defined the
hallmarks of metastasis, they identified ‘the ability to modulate the
secondary site or local microenvironments’ as a characteristic of all
metastases. Multiple bi-directional signalling axes between
tumour cells and the TME drive the multifaceted metastatic
process. A complex network of paracrine signalling pathways
between different stromal cell types, including CAFs, immune
cells, and endothelial and myeloid cells, which can drive
metastases, has been identified in both the primary tumour and
metastatic sites.5–9 In addition, stromal cells such as CAFs and
macrophages secrete a number of factors including extracellular
proteases and protease inhibitors that are involved in remodelling
the ECM.6,10,11 Although the composition of the ECM varies
dramatically between cancer types, a common remodelling
programme of the ECM and ECM-associated proteins (known as
the matrisome) has been suggested to occur during metastasis in
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multiple solid carcinomas, and the pattern of expression of 22 so-
called ‘matrisome’ genes was shown to be predictive of disease
outcome.12,13 The primary tumour can also direct the formation of
a ‘pre-metastatic niche’ via the systemic release of tumour-derived
factors and extracellular vesicles that result in the restructuring
and ‘priming’ of the metastatic site prior to the arrival of tumour
cells (reviewed in ref. 14). The TME within these metastatic niches
provides survival cues for the tumour cells, including immune-
suppressive signals that determine whether DTCs form metastases
or remain dormant, and can also direct the reactivation of
dormant cells to mediate late recurrences in patients (Fig. 1).6,15

Understanding the relationship between the various elements
of the TME is key to fully elucidating the biological processes that
drive the metastatic cascade, which, in turn, should provide
opportunities for therapeutic intervention. In this review, we will
introduce the interplay between different cellular components of
the TME, with a focus on CAFs and immune cells, and describe
significant advances made over the past 5 years detailing the role
of these components in mediating metastatic spread. Although
many of these processes are likely to be common to a number of
metastatic sites, we will describe in detail the metastatic
microenvironment in the liver, a preferred site of metastasis for
many tumours, including colorectal, pancreatic tumours, melano-
mas and sarcomas.16

KEY CELLULAR PLAYERS IN THE TME: CAFS
The origin of CAFs
Due to the lack of cell markers that are unique to fibroblasts and
CAFs, the accurate definition of fibroblasts and CAFs remains
elusive, as does the origin of CAFs. Classically, fibroblasts are
defined as spindle-shaped cells that are embedded within the
ECM and lack epithelial, endothelial and leucocyte markers. In the
normal physiological stroma, fibroblasts exist in a quiescent state;
however, in the reactive tumour stroma, multiple signals can push
resting fibroblasts to an activated state. These signals include
inflammatory cytokines and growth factors such as transforming
growth factor-β (TGF-β) and platelet-derived growth factor (PDGF)
secreted from tumour cells and other stromal cells within the TME.
In addition, mechanical changes and remodelling of the ECM can
drive CAF activation. Although, in most cases, CAFs originate from
pre-existing quiescent fibroblasts, in some tissues, activated CAF-
like populations can also derive from additional tissue-resident
precursors, such as hepatic stellate cells (HSCs; as detailed below),
bone marrow-derived mesenchymal stem cells, adipocytes and
pericytes.10,11

Pro-tumorigenic and pro-metastatic roles of CAFs
A plethora of studies have demonstrated that CAFs are critical
regulators of tumour growth and metastasis, acting via multiple
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Fig. 1 The metastatic cascade. Metastasis occurs in a number of steps starting with the invasion of tumour cells into the local stroma (1) and
their intravasation (2) into the vascular or lymphatic system. In the case of haematogenous metastasis, they must survive the mechanical
forces of the circulatory system and suppressive immune cells (3). Few circulating tumour cells (CTCs) survive the circulation but those that do
then extravasate into the metastatic site (4). The systemic release of exosomes, inflammatory cytokines and growth factors by cancer and
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supports the outgrowth of DTCs before their arrival.14 Once in the metastatic site, disseminated tumour cells (DTCs) must overcome immune
surveillance by resident immune cells, and can direct immune suppression by recruiting myeloid-derived suppressor cells. DTCs can also
become dormant, induced by factors derived from metastatic niche stromal cells,110–112 or supported by signalling from endothelial cells,113

and then subsequently ‘awakened’ by signals from surrounding stromal cells and the extracellular matrix (ECM).15,114 Reawakening of dormant
DTCs can also be induced by exosomes, either released by metastatic niche stromal cells or systemically released by cancer-associated
fibroblasts (CAFs) in the primary site.38,115 Proliferating DTCs form micrometastases and, finally, colonisation of the metastatic niche occurs
and tumour cells form clinically relevant macrometastases, co-opting and recruiting local stromal cells to support metastatic cell growth (5).
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mechanisms (Fig. 2). They can secrete soluble factors such as
growth factors, cytokines and lipids to promote growth and
survival through paracrine signalling in the tumour environment,
as well as secreting and remodelling ECM components. The
secretion of factors at the primary site, along with matrix
remodelling and changes in mechanotransduction, can promote
epithelial-to-mesenchymal transition (EMT), migration and
invasiveness,17,18 while the release of circulating factors such as
TGF-β can also promote metastatic outgrowth.19 Importantly,
CAFs have a role in shaping the immune environment at primary
and metastatic sites. Moreover, CAFs can facilitate the systemic
delivery of soluble factors and extracellular vesicles to prime the
metastatic niche in an organ-specific manner.14 Within the
metastatic niche, CAFs can also directly influence DTCs to promote
their growth and colonisation. Unsurprisingly, therefore, a number
of studies have attributed pro-metastatic functions to CAFs in
various tumour models.18–23

Despite the well-established pro-tumorigenic activity of CAFs, a
tumour-suppressive CAF phenotype has also been reported in
mouse models of pancreatic ductal adenocarcinoma (PDAC).24,25

An increased understanding of heterogeneity within the stromal
compartment (below) might help us to shed light on the
multifaceted roles of CAFs in balancing pro- and anti-tumour
effects.

CAF functional and spatial heterogeneity
Several studies have revealed the existence of distinct CAF
subtypes—as defined by their expression of surface markers—
that display functional heterogeneity and might also be tumour
type-dependent.26–28 These markers include fibroblast activation
protein (FAP), fibroblast-specific protein 1 (also known as S100A4)
and PDGF receptor-β. However, the characterisation of CAFs is
further complicated by reports that these markers can also be
expressed in tumour cells that are undergoing EMT.29

Distinct CAF subtypes also affect tumour invasion and metastasis.
For example, a subset of CAFs is able to drive tumour progression
through integrin α11-mediated promotion of CAF invasion and CAF-
induced tumour cell invasion via the production of the pro-invasive
matrix protein tenascin C.30 Furthermore, in breast cancer, a
CD146+-fibroblast population could preferentially increase metas-
tasis associated with the deposition of a number of ECM
components found in clinically aggressive disease.31 An analysis of
lymph node metastases from breast cancer patients identified
divergent CAF subsets that were similar to those found in primary
tumours. These subsets were shown to promote metastases through
complementary mechanisms: either through their highly contractile
phenotype and activation of NOTCH signalling or through the
induction of EMT resulting from C-X-C motif chemokine ligand 12
(CXCL12) and TGF-β signalling.32 Education of subsets of CAFs by
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tumour cells to drive a pro-metastatic niche suggests that, in
addition to the spatial context of CAFs with respect to tumour cell
proximity,33 the tumour genotype plays an important role in the
regulation of CAF heterogeneity.27 In this context, the p53 status in
pancreatic tumours can reprogramme a subset of CAFs to establish
a metastatic-permissive environment.34

Several reports have identified CAF populations within meta-
static sites that exhibit distinct gene expression patterns
compared with those in the primary tumour.35,36 This additional
level of CAF spatial heterogeneity has been associated with
unique metastasis-enhancing phenotypes. For example, CAFs
generated from breast cancer brain metastasis were able to
induce the migration of patient-derived tumour cells through the
expression of CXCL16 and CXCL12.35 In addition, the selective
upregulation of the insulin-like growth factor 2 gene IGF2 and
interferon-related genes in CAFs from different breast cancer
metastatic tissues compared with primary-site derived CAFs
facilitated CAF-dependent tumour formation and metastasis
in vivo, and immunosuppression via regulation of T cells.36

Metabolic support from CAFs
Other studies have also highlighted the importance of CAFs in
providing metabolic support to drive metastasis. In an ovarian
cancer co-culture model, bi-directional signalling between CAFs and
tumour cells leads to the mobilisation of glycogen as an energy
source in cancer cells, which facilitates metastatic outgrowth.37

Furthermore, the horizontal transfer of entire mitochondrial
genomes from CAF-derived extracellular vesicles to breast cancer
cells treated with hormone therapy restores oxidative phosphoryla-
tion, promoting metastasis and reawakening therapy-induced
dormant cells.38 The exchange and hydrolysis of intracellular lipids
provide another approach by which CAFs support tumour progres-
sion. PDAC-derived CAFs secrete abundant amounts of lysopho-
sphatidylcholines (LPCs), which can be taken up by PDAC cells,
leading in turn to the production of lysophosphatidic acid (LPA), a
growth-permissive phospholipid, via the activity of autotaxin. This
stroma-derived LPC–autotaxin–LPA axis was found to fuel PDAC
growth and migration, although any effects on metastatic progres-
sion have yet to be established.39 Metabolic differences among
patient-derived melanoma xenograft models driven by differences
in the levels of monocarboxylate transporter 1, a lactate transporter,
are associated with differing metastatic potential,40 highlighting the
importance of metabolic alterations in regulating metastatic
progression and the potential for new therapeutic opportunities. It
will be important to consider how dysregulated metabolic signalling
in the CAFs might also influence such treatments.

KEY CELLULAR PLAYERS IN THE TME: IMMUNE CELLS
The immune system can influence all stages of the metastatic
cascade, from the regulation of tumour cell migration and invasion
at the primary tumour site through to priming of the metastatic
niche and supporting the outgrowth of DTCs (Fig. 1).8,9

Immune cells and the metastatic cascade
In primary tumours, immune cells are important regulators of the
ECM and secrete a number of pro-tumorigenic and pro-metastatic
proteases, such as metalloproteinases, that remodel the ECM.41,42

Immune cells also secrete factors that promote tumour cell
intravasation at the primary tumour site.43 Further along in the
metastatic process, the recruitment of inflammatory monocytes at
metastatic sites promotes vascular permeability and extravasation of
CTCs.44 Moreover, metastasis-associated macrophages derived from
these inflammatory monocytes can further enhance metastatic
outgrowth through the secretion of cytokines, and several studies
have identified specific subsets of macrophages that are involved in
organ-specific metastatic outgrowth.45,46 Neutrophil-derived factors
also promote the extravasation of CTCs, and the release of

neutrophil traps further acts to enhance the trapping of CTCs at
distant metastatic sites, leading to increased metastatic spread.47

Neutrophils also play an important role in promoting metastatic
colonisation: they help to create an immunosuppressive environ-
ment by secreting nitric oxide, which inhibits T cell functions.48

However, anti-metastatic effects of neutrophils have also been
described. Work published by Li et al.49 in 2020 attempted to
address these differences and highlighted the importance of natural
killer (NK) cells in dictating whether neutrophils exert pro- or anti-
metastatic effects. In NK cell-competent mice, neutrophils facilitate
metastatic colonisation, while in NK cell-deficient mice, neutrophils
have an inhibitory effect on metastatic colonisation.
Immune cells also play a pivotal role in establishing a permissive

pre-metastatic niche by secreting a number of chemoattractants,
while tumour-derived factors stimulate the mobilisation and
recruitment of bone marrow-derived myeloid cells to the
metastatic niche to remodel the ECM, promote angiogenesis
and drive a pro-inflammatory environment—all of which con-
tribute to metastatic seeding and colonisation.50

The influence of CAFs on the inflammatory environment
CAFs also play a key role in regulating the inflammatory tumour
environment through the secretion of cytokines and deposition of
ECM proteins that are involved in the recruitment and activation of
immune cells.51 Important bi-directional crosstalk between tumour
cells and CAFs controls the balance between the recruitment of pro-
tumorigenic and anti-tumorigenic immune cell populations, which
influences both primary tumour growth and metastatic progression.
A number of studies have provided further insight into the complex
signalling pathways involved. For example, CAFs act as sensors of
damage-associated molecular patterns produced within primary
tumours, which activates the NLRP3 inflammasome pathway and
induces the subsequent secretion from CAFs of the pro-
inflammatory cytokine interleukin-1β (IL-1β). IL-1β, in turn, promotes
metastases through multiple mechanisms, among which is a
reduction in the recruitment of immunosuppressive CD11b+Gr1+

myeloid cells in the metastatic environment.52 Conversely, DTCs can
induce a pro-inflammatory phenotype in fibroblasts within the
metastatic niche by secreting IL-1α and IL-1β, which trigger the
production by fibroblasts of CXCL9 and CXCL10 to subsequently
support the outgrowth of the DTCs.53

KEY NON-CELLULAR COMPONENTS IN THE TME: THE ECM AND
ITS REMODELLING
The non-cellular component of the TME, the ECM, is a network of
macromolecules, including collagens, fibronectin and elastin,
which provides structural support in a tissue-specific manner. It
is a highly dynamic structure that responds to external cues, while
also providing biochemical and biomechanical signals to sur-
rounding cells within the tissue, thereby playing a fundamental
role in normal tissue homeostasis and disease processes including
metastasis formation.54 Detailed review of the role of the ECM in
metastasis is beyond the scope of this article and has been
reviewed elsewhere.13 Here, we highlight the role of CAFs and
immune cells in regulating ECM remodelling.
The concept of dynamic reciprocity, whereby cells process

signals from their environment, which can then, in turn, regulate
the ECM, was first introduced in the early 1980s in the context of
epithelial morphogenesis and wound healing, and has since been
identified as a crucial process regulating the behaviour of
tumours, especially the invasive and metastatic potential of
tumour cells.55 This reciprocity is predominantly mediated via
cell-surface ECM receptors, which include integrins and collagen-
binding discoidin domain receptors (DDRs), and both CAFs and
macrophages play a key role in this process leading to
remodelling of the ECM in the metastatic niche to promote cell
adhesion and survival.
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A number of new players in the CAF-dependent remodelling of
the ECM that control mechanotransduction and ECM stiffness to
drive metastasis have been identified. The deletion in CAFs of DDR2,
a critical regulator of integrin-based mechanotransduction and
collagen fibre organisation, results in a significant reduction in
tumour stiffness and the extent of pulmonary metastasis.56 In a
model of melanoma, a novel role for fibroblast-secreted factors in
altering the lymphatic ECM has been identified. Secretion of
hyaluronic and proteoglycan link protein (HAPLN1), which crosslinks
hyaluronan to the ECM, leads to changes in the permeability of
lymphatic endothelial cells, thereby enabling melanoma cells to
escape from the lymphatic system to distant metastatic sites.57

Bertero et al.58 have also shown that changes in ECM stiffness
induce changes in amino acid metabolism in both CAFs and tumour
cells, and that these changes drive a complex crosstalk whereby
CAF-derived aspartate sustains cancer cell proliferation, while cancer
cell-derived glutamate balances the redox state of CAFs to promote
ECM remodelling. Targeting aspartate and glutamate transporters
either genetically or pharmacologically reduced metastatic spread.
The interaction between CAFs, immune cells and remodelling of

the ECM is of particular importance in the fibrotic liver
environment, and we will now discuss in detail the interplay
between metastatic tumour cells, the immune environment, and
HSCs (the resident fibroblasts within the liver) in the liver
environment, a common site of metastasis.

THE FORMATION OF A METASTATIC MICROENVIRONMENT IN
THE LIVER
Following metastatic spread, cancer cells from a number of
primary malignancies find themselves in the liver, which appears
to be a preferred site of metastasis for many tumours.59–61 Why

the liver is such a privileged site is a topic of much debate.
Nevertheless, for a metastatic cell to take hold, the recipient organ
requires an extensive vascular network to provide ready access for
the cancer cell. Moreover, to establish a secondary tumour, the
cancer cells must be able to take over a dynamic local immune
environment that it can utilise to facilitate its growth.

Sinusoids: cellular suppressors of metastasis
The vasculature of the liver is highly specialised, with blood
entering through the portal circulation and passing through
sinusoids. These narrow vessels, which are lined with sieve-like
fenestrated endothelial cells (liver sinusoidal endothelial cells;
LSECs), form a highly permeable barrier that facilitates the rapid
exchange of biological and xenobiotic compounds between the
blood and the metabolic hepatocytes. As blood passes through
this highly efficient filtration system, it is surveyed by local
populations of immune cells adjacent to the LSECs, including
Kupffer cells (resident hepatic macrophages) and other circulating
lymphocytes (Fig. 3).62 Within the lumen of hepatic sinusoids,
CTCs have the potential to extravasate to initiate a metastasis;
however, relatively few do. Although a number of CTCs might pass
through the hepatic sinusoids, many will be killed by a complex
sinusoidal immune surveillance network.63,64 Importantly, the
sinusoids function as active cellular suppressors of metastasis,
with cytokine and chemokine crosstalk between sinusoidal
endothelial cells, Kupffer cells, and circulating lymphocytes acting
together to identify CTCs and mark them for cellular killing.65 This
multicellular approach involves the release of pro-apoptotic
factors, such as reactive oxygen species, nitric oxide and
interferon-γ, by sinusoidal endothelial cells, thereby inducing the
direct apoptosis of CTCs.66 In tandem with this, Kupffer cells lining
the sinusoids are able to detect the presence of cancer cells and,
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through the release of a number of pro-inflammatory cytokines,
recruit a transient lymphocyte niche that senses and targets
metastatic cells, thereby clearing them from the microvasculature
and preventing them from establishing a new metastatic
tumour.67,68

Surmounting the sinusoids
The initiation of metastasis in the liver requires cancer cells to
cross the immunologically defensive barrier of endothelial cells
and immune cells, and establish themselves within the space of
Dissé, a region adjacent to the sinusoid which, in healthy
individuals, accommodates HSCs—liver fibroblasts that are central
for establishing scar formation following injury (Fig. 3). Somewhat
counterintuitively, many of the cell types that are required for
immune surveillance and the formation of a physical barrier to
prevent metastatic colonisation of the liver are co-opted by cancer
cells. Several studies have highlighted the importance of cell
adhesion molecules such as integrins and selectins on sinusoidal
endothelial cells, which immobilise cancer cells as they move
through the sinusoids. This strategy enables the CTCs to
delaminate through the endothelial layer of the sinusoid and
into the space of Dissé, where they are protected from immediate
immune sensing and the processes of tumour cell clearance.69–71

Generating a vascular network
Once in the space of Dissé, tumour cells are able to recruit
myeloid-derived suppressor cells, which can then modulate the
tumour cell immune microenvironment by, for example, suppres-
sing CD8+ T cells, thereby promoting colonisation of the liver with
cancer cells.72 However, the formation of micrometastases in the
space of Dissé is limited by the availability of a vascular network.
Evidence suggests that, in the liver, these DTCs can promote the
formation of a local vasculature from the sinusoidal endothelial
cells or from the larger vessels in the liver; whether one of these
vascular origins is favoured is not clear.73,74 However, the dynamic
recruitment of a vasculature necessitates a change in the local
immune microenvironment, and again, high levels of TGF-β
(produced by the cancer cells) can promote the polarisation of
metastasis-associated macrophages to an M2-like phenotype
(alternatively activated macrophages) while suppressing M1
(classically activated macrophages) tumour necrosis factor-α
(TNF-α)-producing macrophages.64,75–77 This immunological
switching of immune cell phenotypes is considered to be an
essential trait of tumour initiation and, as a consequence, M2-like
macrophages drive remodelling of the ECM through the produc-
tion of matrix metalloproteinases, as well as supporting fibroblasts
to produce pro-angiogenic signals such as vascular endothelial
growth factor (VEGF) to facilitate further vascular recruitment.78,79

Role of HSCs
In addition to a complex immune microenvironment, the liver also
contains two distinct populations of fibrogenic cells: HSCs in the
space of Dissé80 and portal fibroblasts surrounding the bile duct.81

Fibroblasts are normally quiescent but, in response to injury, both
of these cell types are capable of activation and express classical
markers of activated fibroblasts such as α-smooth muscle actin (α-
SMA), tissue inhibitors of metalloproteinases and ECM compo-
nents. In premalignant, fibrotic disease, HSCs are activated
following exposure to a number of extracellular cytokines
(reviewed in ref. 82) and through a number of cell-autonomous
processes.83 The plasticity of these cells and their relative
contribution to premalignant disease, however, might be more
dynamic than previously thought, and only since the application
of single-cell RNA-sequencing to these populations has their
complexity been appreciated (reviewed in ref. 84).
Activated HSCs (also known as hepatic myofibroblasts) con-

tribute to scar formation and fibrosis in chronic liver disease by
depositing collagen and other components of the scar.85 This

stiffening of the liver is thought to make the tissue permissive to
cancer cell proliferation and, in primary liver cancer, HSCs are a
known source of many mitogens and cytokines that are required
for cancer growth.86,87 In metastatic disease too, HSCs appear to
play a reiterative role in metastatic priming and tumour
progression.
The de novo production of highly crosslinked collagen in this

new metastatic environment has two principal effects. Initially, it
promotes survival by stiffening the local environment, and a
number of studies have linked increased stiffness of the ECM to
enhanced tumour cell survival in the liver and increased
progression through the cell cycle. Shen et al.88 reported in
2020 that activated fibroblasts isolated from liver metastases,
which express α-SMA, phosphorylated myosin light chain and
collagen-1, are highly contractile and increase the local rigidity
surrounding the metastasis, thereby supporting angiogenesis and
metastatic growth. Furthermore, the altered ECM promotes pro-
survival signalling through the engagement of ECM receptors
such as integrins,71 thereby conferring a survival advantage on
tumour cells within the space of Dissé over those that remain
within the sinusoid.
The transition of quiescent HSCs into activated fibroblasts also

controls PDAC quiescence in the hepatic niche. Whereas
cancerous epithelial cells from PDAC are forced into IL-8-
induced quiescence by quiescent HSCs, activated HSCs fail to
induce cancer cell quiescence, but rather support cancer cell
proliferation by expressing growth factors such as VEGF,78 and are
sufficient to promote a stem-like phenotype in pancreatic cancer
cells by downregulating E-cadherin and inducing the expression
of mesenchymal markers and nestin. This stem-like phenotype is
partially reversed by inhibiting TNF-α signalling between the HSCs
and tumour cells.89

The quiescent HSC to active HSC transition is clearly important
in allowing the liver to be permissive to colonisation by pancreatic
cancer cells. Similar mechanisms are likely to play a role in the
colonisation of the liver by other tumour cells, too. Importantly,
should the process by which these different tumour cells colonise
the liver be a common one, then developing methods to
intervene in this would be far-reaching. Relaxin, an endogenous
peptide hormone, has anti-fibrotic properties and has been shown
to be effective in ameliorating scar formation in the liver and
reversing systemic syndromes associated with liver stiffening in
cirrhosis. Interestingly, in mouse models of liver colonisation by
pancreatic, colorectal and breast cancer cells, the production of
ectopic relaxin reduces the activation of HSCs at the metastatic
site and inhibits metastatic colonisation. Moreover, when the
activation of HSCs is reduced, metastases are more susceptible to
treatment with immunotherapy,90 placing HSCs and activated
macrophages at the centre of a microenvironment that can
modulate both the growth of metastases and also their immune
surveillance.

Priming the hepatic metastatic niche
As mentioned, the liver appears to be a privileged site for cancer
metastasis. As such, there has been a significant focus on how a
metastatic microenvironment is established within the liver,
whether this microenvironment is essential for the seeding of
metastatic cancer within the liver, and whether primary tumours
themselves are able to remotely alter the liver metastatic
microenvironment to make it receptive to colonisation. In PDAC,
tumour-derived exosomes mediate the formation of a pre-
metastatic microenvironment in the liver, which then facilitates
colonisation by metastatic cancer cells.91 The exosomes, which
contain high levels of macrophage migration inhibitory factor
(MIF), are taken up by Kupffer cells, which are induced to express
TGF-β. These TGF-β-expressing macrophages subsequently acti-
vate local HSCs to produce fibronectin, thereby generating a local
microenvironment that is permissive for the recruitment of bone
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marrow-derived macrophages that is required for the formation of
the pre-metastatic niche and metastatic outgrowth. Inhibition of
exosomal-derived MIF leads to reduced colonisation of the liver
with metastatic cancer cells, highlighting the importance of
distant cues in priming the liver to receive metastatic cells.
Subsequent studies have indicated that the population of bone
marrow-derived monocytes that is recruited to the site of
metastasis comprises pro-inflammatory monocytes that secrete
high levels of the glycoprotein granulin, which promotes the
production of periostin by HSCs and results in the formation of a
fibrotic microenvironment that supports tumour growth.92

Ageing, tumour progression and liver metastasis
Changes in the TME that occur during ageing are now being
recognised to play an important role in tumour progression and
can have profound effects on the development of metastases.93

Such changes include the reprogramming of the fibroblast
secretome, which can enhance metastatic spread by mediating
physical alterations in the ECM that promote enhanced migration
and invasiveness94 Interestingly, age-related changes were also
associated with a reduction in the motility of certain immune cell
populations, resulting in a change in the immune environment.94

Although these immune changes were not directly associated
with a reduction in metastatic capacity, several other studies have
identified age-related changes in the immune microenvironment
that could influence priming of the pre-metastatic niche and
metastatic progression.95 The link between age-associated inflam-
mation, priming of the metastatic niche and activation of resident
fibroblasts is likely to play an important role in metastatic
outgrowth. For example, in a mouse model of PDAC, the aged
liver provides a permissive inflammatory environment that
supports the activation of HSCs to secrete factors that promote
the outgrowth of DTCs.78

THERAPEUTIC OPPORTUNITIES
Important new advances in our understanding of the TME have
unveiled potential new therapeutic options, and a number of
clinical trials that target interactions between tumour cells and
stromal cells are underway in the metastatic disease setting and
have previously been reviewed.8,29

Targeting stromal cells
Inhibiting the recruitment of immune cells that drive a pro-
tumorigenic environment as well as inhibition of their effector
signalling pathways, or their re-education to anti-tumour pheno-
types, have all been shown to prevent metastases in preclinical
models.8 Similar approaches have been undertaken to target CAFs,
by depleting specific subtypes or reprogramming them back to their
resting state, or by targeting their activation or downstream
effectors.29 For example, metastatic outgrowth following primary
tumour resection was delayed following treatment with a vaccine
that eliminates FAP+ CAFs.96 Targeting FAP and thereby reversing
the CAF-induced pro-inflammatory tumour environment has been
the focus of many studies, although the results from clinical studies
in patients with advanced metastatic disease have been disappoint-
ing with limited evidence of efficacy. Further work on understanding
the differences in the TME at the metastatic site is required to help
optimise potential therapeutic benefit.

Targeting CAF-derived factors
Within the TME, CAFs are a major source of TGF-β, which plays a
key role in controlling anti-tumour immunity. In metastatic
urothelial cancer, lack of response to the checkpoint inhibitor
anti-programmed death-ligand 1 in clinical trials was linked to
TGF-β signalling in fibroblasts and the consequent presence of
CD8+ T-effector cells in the peritumoural stroma (rather than the
tumour parenchyma).97 In a model of metastatic colorectal cancer,

inhibition of TGF-β initiated a cytotoxic T cell response, and,
importantly, in both these studies, inhibition of TGF-β signalling
enhanced the activity of immune checkpoint inhibitors.98

Although direct effects on metastatic outgrowth have not been
reported, effective targeting of other CAF-derived factors, includ-
ing CXCL12, have also been shown to enhance the effectiveness of
checkpoint immunotherapy in mouse models, and work on
optimising this approach for the treatment of metastatic disease
will be important going forward.99 CAFs are also able to restrict
immune cell infiltration through remodelling of the ECM, although
studies in the metastatic setting are more limited.29

A note of caution
It is also important to consider that many agents in development
that have been designed with the intention of directly targeting
tumour cells might also have an effect on the activity of stromal
cells. For example, the importance of focal adhesion kinase (FAK)
within the tumour cell compartment in driving tumour prolifera-
tion and metastasis is well documented and has led to the
development of a number of small-molecule inhibitors, which are
currently under clinical evaluation.100 Interestingly, fibroblast-
directed deletion of FAK, in a genetically engineered mouse model
of breast cancer, reduced metastasis but had no effect on primary
tumour growth. Mechanistically, this result was attributed to the
secretion from FAK-deficient CAFs of exosomes enriched with the
tumour-suppressive microRNAs miR-16 and miR-148a, which
suppressed an EMT and migratory phenotype in the cancer
cells.101 These data unveiled an additional role for FAK signalling
in the tumour stromal compartment, promoting a more migratory
and metastasis-competent phenotype. In addition, in a model of
PDAC, inactivation of the kinase activity of FAK in fibroblasts
reduced fibrosis, immunosuppressive cell populations and tumour
progression.102 However, by contrast, work from the Hodivala-
Dilke group has shown that loss of FAK from CAFs can promote
breast tumour growth through alterations in tumour metabo-
lism.103 The use of different promoters to drive Cre recombinase-
mediated fibroblast-specific deletion of FAK might represent
targeting of distinct CAF subpopulations and explain the disparate
results in these studies. However, the results highlight the need to
consider the impact of treatments on both stromal and tumour-
derived signals, and that subtle differences in the crosstalk
between specific subpopulations of stromal cells will be important
in determining the response. To this end, understanding the early
interplay between immune cells, HSCs/CAFs and tumour cells
during metastatic colonisation is important in developing
therapeutic intervention strategies. It would not be necessary to
target all of these components: a single aspect of this TME could
be targeted, which would destabilise the formation of early
metastases. For example, by targeting CCR5 on immune cells
using a Food Drug Administration-approved antagonist (mara-
viroc), Adwan and colleagues104 were able to reduce the liver
colonisation of colorectal cancer cells in an animal model. The TME
should be seen as a well-balanced and evolving microenviron-
ment that is sensitive to disruption with targeted therapies.

CONCLUSIONS
The TME clearly plays a critical role in shaping the progression of
highly aggressive metastatic disease, for which current treatment
options are limited. Our increased understanding of the complex
interplay between different stromal compartments and how they
influence tumour cell phenotypes is key to developing more
effective therapies. These endeavours are being aided by new
technologies, such as single-cell RNA-sequencing. This
approach has identified distinct transcriptomic profiles in micro-
metastatic lesions from breast cancer-patient-derived xenograft
models and revealed mitochondrial oxidative phosphorylation to
be the main pathway upregulated in micrometastases in these
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models. Notably, targeting oxidative phosphorylation could
reduce metastatic seeding.105 Single-cell analysis of CAFs has also
identified specific subsets of CAFs associated with immunosup-
pression and immunotherapy resistance in patients with breast
cancer raising the possibility of targeting specific CAF populations
to enhance the effects of immunotherapies.106 Such analysis also
highlights the growing complexity governing the metastatic
process, and future studies might benefit from incorporating a
systems-level approach to help uncover key hubs that are
responsible for driving disease progression.107

A number of organs, including the liver, appear to be privileged
sites for tumour metastasis. The liver has evolved to be highly
regenerative and contains a number of cell lineages (epithelial and
endothelial) that can exit mitotic quiescence and proliferate to
repair damage or deposit scar tissue to maintain the integrity of
the tissue. Given the central role the liver plays in detoxification
and how it is subject to recurrent insult/injury throughout adult
life, this is a necessary evolutionary adaptation. However, this
regenerative capability has also allowed it to become a prime
metastatic site for CTCs. While the local immune repertoire of the
sinusoid can sense tumour cells and orchestrate their killing, once
a cancer cell has overcome this surveillance it can enter the space
of Dissé where it co-opts local HSCs and immune cells to build a
metastatic microenvironment, changing the physical and signal-
ling parameters around these early tumour cells to facilitate their
survival and promote their growth. While some of the cellular and
acellular players have been identified in liver, we should not
overlook the fact that these components may differ between
tissues. Indeed, the process of colonisation could be very different
depending on the tissue of origin of the cancer cell(s), with
different signals and cells required to initiate metastasis.
The TME is highly dynamic; however, most studies monitoring

metastatic spread are only able to provide a snapshot of what is
happening. Intravital imaging approaches that allow imaging in
both the primary and metastatic sites are now providing key
insights into the dynamic temporal and spatial regulation of
different stromal cell populations and how they interact with each
other and the tumour cells.43,108,109 Taken together, the complex-
ity and heterogeneity of signalling within the stroma mean that a
pan-treatment targeting individual stromal cells is unlikely to be
effective, and that tumour-specific approaches might instead be
required. A greater understanding of how the reciprocal commu-
nication between immune cells and CAFs sustains a pro-
tumorigenic environment provides additional impetus for com-
bining therapies that target CAFs and immune cell functions and
opens up exciting opportunities for treating patients with
metastatic disease, an important area of unmet clinical need.
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