5 research outputs found

    Rehydration Properties of Whey Protein Isolate Powders Containing Nanoparticulated Proteins

    Get PDF
    peer-reviewedThe rehydration properties of original whey protein isolate (WPIC) powder and spray-dried WPI prepared from either unheated (WPIUH) or nanoparticulated WPI solutions were investigated. Nanoparticulation of whey proteins was achieved by subjecting reconstituted WPIC solutions (10% protein, w/w, pH 7.0) to heat treatment at 90 °C for 30 s with no added calcium (WPIH) or with 2.5 mM added calcium (WPIHCa). Powder surface nanostructure and elemental composition were investigated using atomic force microscopy and X-ray photoelectron spectroscopy, followed by dynamic visualisation of wetting and dissolution characteristics using environmental scanning electron microscopy. The surface of powder particles for both WPIUH and WPIC samples generally appeared smooth, while WPIH and WPIHCa displayed micro-wrinkles with more significant deposition of nitrogen and calcium elements. WPIH and WPIHCa exhibited lower wettability and solubility performance than WPIUH and WPIC during microscopic observation. This study demonstrated that heat-induced aggregation of whey proteins, in the presence or absence of added calcium, before drying increases aggregate size, alters the powder surface properties, consequently impairing their wetting characteristics. This study also developed a fundamental understanding of WPI powder obtained from nanoparticulated whey proteins, which could be applied for the development of functional whey-based ingredients in food formulations, such as nanospacers to modulate protein–protein interactions in dairy concentrates.Food Institutional Research Measur

    Pilot-scale production and physicochemical characterisation of spray-dried nanoparticulated whey protein powders

    Get PDF
    Spray-dried whey protein isolate (WPI) powders were prepared at pilot-scale from solutions without heat (WPIUH), heated (WPIH) or heated with calcium (WPIHCa), which were analysed and compared with a control sample (WPIC). WPIC, WPIUH, WPIH and WPIHCa solutions had whey protein denaturation levels of 0.0, 3.2, 64.4 and 74.4%, respectively. Computerised tomography scanning showed that 52.6, 84.0, 74.5 and 41.9% of WPIC, WPIUH, WPIH and WPIHCa powder particles had diameters of ≤30 µm. WPIHCa and WPIH powders were cohesive, while WPIC and WPIUH powders were easy flowing. Marked differences in microstructure were observed between WPIH and WPIHCa. There were no measured differences in wall friction, bulk density or colour

    The Effect of High Protein Powder Structure on Hydration, Glass Transition, Water Sorption, and Thermomechanical Properties

    No full text
    Poor solubility of high protein milk powders can be an issue during the production of nutritional formulations, as well as for end-users. One possible way to improve powder solubility is through the creation of vacuoles and pores in the particle structure using high pressure gas injection during spray drying. The aim of this study was to determine whether changes in particle morphology effect physical properties, such as hydration, water sorption, structural strength, glass transition temperature, and α-relaxation temperatures. Four milk protein concentrate powders (MPC, 80%, w/w, protein) were produced, i.e., regular (R) and agglomerated (A) without nitrogen injection and regular (RN) and agglomerated (AN) with nitrogen injection. Electron microscopy confirmed that nitrogen injection increased powder particles’ sphericity and created fractured structures with pores in both regular and agglomerated systems. Environmental scanning electron microscopy (ESEM) showed that nitrogen injection enhanced the moisture uptake and solubility properties of RN and AN as compared with non-nitrogen-injected powders (R and A). In particular, at the final swelling at over 100% relative humidity (RH), R, A, AN, and RN powders showed an increase in particle size of 25, 20, 40, and 97% respectively. The injection of nitrogen gas (NI) did not influence calorimetric glass transition temperature (Tg), which could be expected as there was no change to the powder composition, however, the agglomeration of powders did effect Tg. Interestingly, the creation of porous powder particles by NI did alter the α-relaxation temperatures (up to ~16 °C difference between R and AN powders at 44% RH) and the structural strength (up to ~11 °C difference between R and AN powders at 44% RH). The results of this study provide an in-depth understanding of the changes in the morphology and physical-mechanical properties of nitrogen gas-injected MPC powders

    Linkages between extracellular enzyme activities and the carbon and nitrogen content of grassland soils

    No full text
    International audienceImportant biochemical reactions in soils are catalyzed by extracellular enzymes, which are synthesized by microbes and plant roots. Although enzyme activities can significantly affect the decomposition of soil organic matter and thus influence the storage and cycling of carbon (C) and nitrogen (N), it is not clear how enzyme activities relate to changes in the C and N content of different grassland soils. Here we address whether the activity of C-acquiring (b-1,4-glucosidase, BG) and N-acquiring (L-leucine amino-peptidase (LAP) and b-1,4-N-acetyl-glucosaminidase (NAG)) enzymes is linked to changes in the C and N content of a variety of human-managed grassland soils. We selected soils which have a well-documented management history going back at least 19 years in relation to changes in land use (grazing, mowing, ploughing), nutrient fertilization and lime (CaCO 3) applications. Overall we found a positive relationship between BG activity and soil C content as well as between LAP Ăľ NAG activity and soil N. These positive relationships occurred across grasslands with very different soil pH and management history but not in intensively managed grasslands where increases in soil bulk density (i.e. high soil compaction) negatively affected enzyme activity. We also found evidence that chronic nutrient fertilization contributed to increases in soil C content and this was associated with a significant increase in BG activity when compared to unfertilized soils. Our study suggests that while the activities of C-and N-acquiring soil enzymes are positively related to soil C and N content, these activities respond significantly to changes in management (i.e. soil compaction and nutrient fertilization). In particular, the link between BG activity and the C content of long-term fertilized soils deserves further investigation if we wish to improve our understanding of the C sequestration potential of human-managed grassland soils
    corecore