110 research outputs found

    How cognitive rehabilitation can affect motor cognition, fatigue perception and fatigability. Hypothesis of early assessment and intervention.

    Get PDF
    Background: Cognitive impairment is common in Multiple Sclerosis (MS), occurring in up to 65% of patients. The cognitive domains affected most commonly in MS include information processing speed (often first target of progressive cognitive decline), learning and episodic and working memory. The management of cognitive impairment still relies on rehabilitative strategies, which have been reported to be effective in ameliorating cognitive domains but, even if strongly recommended for MS management and standard care, multidisciplinary treatment, including physiotherapy, occupational therapy, speech and swallow therapy, neuropsychology, built on cognitive rehabilitation principles, has scarce scientific evidence. Aim: to incorporate the cognitive assessment into MS clinics and clinical trials, to utilize state-of-the-art neuroimaging to explicate neural bases of deficits, and to develop effective symptomatic cognitive treatments. Methods and analysis: A total of 16 people with Multiple Sclerosis (MS) has been randomly assigned to ReBrain group and standard care group. They both consist in multidisciplinary rehabilitation protocol with two hours twice a week for 12 weeks sessions including physiotherapy, occupational therapy, neuropsychological therapy and speech and swallow therapy. ReBrain treatments follow principle of cognitive rehabilitation, combining restorative and compensatory strategies, specific exercises of executive attention stimulation and holistic approach. Evaluation scales will be assessed immediately before (baseline visit, T0), after the booster session (T1, 12 weeks after baseline visit), at three months (T2, 24 weeks after baseline visit). Discussion: According to the preliminary data collected, the newly introduced ReBrain protocol allows a reliable management of PwMS showing cognitive impairment. An increased number of participant is needed to obtain more significant results

    Bistren cryptands and cryptates: versatile receptors for anion inclusion and recognition in water

    Get PDF
    Bistren cryptands can act as selective anion receptors in water in two distinct versions: as hexaprotonated cages and as dicopper(ii) cryptates. Both classes of receptors exert geometrical selectivity, but dimetallic cryptates establish the strongest interactions with the anion

    Recognition and Sensing of Nucleoside Monophosphates by a Dicopper(II) Cryptate

    Get PDF
    The dicopper complex of a bis-tren cryptand in which the spacer consists of two furane subunits connected in 2,2' by a -CH2- fragment selectively recognizes guanosine monophosphate with respect to other nucleoside monophospates (NMPs) in a MeOH/water solution at pH 7. Recognition is efficiently signaled through the displacement of the indicator 6-carboxyfluorescein bound to the receptor, monitoring its yellow fluorescent emission. Titration experiments evidenced the occurrence of several simultaneous equilibria involving 1:1 and 2:1 receptor/NMP and receptor/indicator complexes. It was demonstrated that the added NMP displaces the indicator from the 2:1 receptor/indicator complex, forming the 1:1 receptor/ analyte inclusion complex. Recognition selectivity is thus ascribed to the nature of nucleotide donor atoms involved in the coordination and their ability to encompass the CuII-CuII distance within the cryptate

    Mixing the spacers in azacryptands: effects on halide recognition

    Get PDF
    Replacement of just one spacer in dicopper cryptates drastically alters the cavity's shape, thus affecting halide recognition

    A Catalytic and Selective Scissoring Molecular Tool for Quadruplex Nucleic Acids

    Get PDF
    A copper complex embedded in the structure of a water-soluble naphthalene diimide has been designed to bind and cleave G-quadruplex DNA. We describe the properties of this ligand, including its catalytic activity in the generation of ROS. FRET melting, CD, NMR, gel sequencing, and mass spectrometry experiments highlight a unique and unexpected selectivity in cleaving G-quadruplex sequences. This selectivity relies both on the binding affinity and structural features of the targeted G-quadruplexes

    Protein fingerprints of cultured CA3-CA1 hippocampal neurons: comparative analysis of the distribution of synaptosomal and cytosolic proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All studies aimed at understanding complex molecular changes occurring at synapses face the problem of how a complete view of the synaptic proteome and of its changes can be efficiently met. This is highly desirable when synaptic plasticity processes are analyzed since the structure and the biochemistry of neurons and synapses get completely reshaped. Because most molecular studies of synapses are nowadays mainly or at least in part based on protein extracts from neuronal cultures, this is not a feasible option: these simplified versions of the brain tissue on one hand provide an homogeneous pure population of neurons but on the other yield only tiny amounts of proteins, many orders of magnitude smaller than conventional brain tissue. As a way to overcome this limitation and to find a simple way to screen for protein changes at cultured synapses, we have produced and characterized two dimensional electrophoresis (2DE) maps of the synaptic proteome of CA3-CA1 hippocampal neurons in culture.</p> <p>Results</p> <p>To obtain 2D maps, hippocampal cultures were mass produced and after synaptic maturation, proteins were extracted following subfractionation procedures and separated by 2D gel electrophoresis. Similar maps were obtained for the crude cytosol of cultured neurons and for synaptosomes purified from CA3-CA1 hippocampal tissue. To efficiently compare these different maps some clearly identifiable reference points were molecularly identified by mass spectrometry and immunolabeling methods. This information was used to run a differential analysis and establish homologies and dissimilarities in these 2D protein profiles.</p> <p>Conclusion</p> <p>Because reproducible fingerprints of cultured synapses were clearly obtained, we believe that our mapping effort could represent a simple tool to screen for protein expression and/or protein localization changes in CA3-CA1 hippocampal neurons following plasticity.</p
    • …
    corecore