Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

A bistren cryptand with a remote thioether function: Cu(II) complexation in solution and on the surface of gold nanostars

P. Pallavicini, V. Amendola, G. Bergamaschi, E. Cabrini, G. Dacarro, N. Rossi and A. Taglietti

Electronic Supporting Information

Figure S1 – SEM images of a GNS SAM (Type II surface)

Figure S2 - UV-Vis-NIR extinction spectrum of a GNS colloidal solution in water

Figure S3 – TEM image of a TEM colloid used for coating (the image in Figure 2B, main text, is a detail taken from this larger image)

TSA (two-step functionalization approach)

Figure S4A: extinction spectrum of a slide undergoing TSA, i.e. of aType II slide, of the slide after addition of L and of the same after further treatment with Cu^{2+} .

Figure S4B: extinction spectra of 4 different Type II slides (only GNS on PEI) before (black) and after (red) the immersion in a 10^{-4} M solution of Cu(CF₃SO₃)₂, evidencing the red shift of the GNS LSPRs on contact with Cu²⁺ cations.

Figure S5: Distribution diagrams relative to Cu and L, calculated at the experimental conditions of the Cu²⁺ release in water from Type III surfaces (*i.e.* [L] = 0.667 μ M and [Cu²⁺]=1.33 μ M). Both diagrams have been obtained by considering the protonation and complexation constants reported in Table 1.

The hypothesized 0.667 μ M concentration for the [Cu₂L]⁴⁺ complex is obtained considering the surface of the slides (2.2x2.6 cm), that are functionalized on both sides (total surface = 11.44 cm²). The surface concentration of the complex is 1/2 of that of Cu²⁺ with the SSA (see Table 2, main text), i.e. 0.175 nmol/cm². This leads to 2.002 nmol of complex. The volume of solution in contact with such moles is 3.0 mL. 2.002x10⁻⁹/0.003 gives the used 6.67x10⁻⁷ molar concentration.