8 research outputs found

    Carrageenans as a New Source of Drugs with Metal Binding Properties

    Get PDF
    Carrageenans are abundant and safe non-starch polysaccharides exerting their biological effects in living organisms. Apart from their known pro-inflammation properties and some pharmacological activity, carrageenans can also strongly bind and hold metal ions. This property can be used for creation of the new drugs for elimination of metals from the body or targeted delivery of these metal ions for healing purposes. Metal binding activity of different carrageenans in aqueous solutions containing Y3+ or Pb2+ ions was studied in a batch sorption system. The metal uptake by carrageenans is not affected by the change of the pH within the range from 2.0 to 6.0. The rates and binding capacities of carrageenans regarding metal ions were evaluated. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants, and the sorption isothermal data could be explained well by the Langmuir equation. The results obtained through the study suggest that κ-, ι-, and λ-carrageenans are favorable sorbents. The largest amount of Y3+ and Pb2+ ions are bound by ι-carrageenan. Therefore, it can be concluded that this type of polysaccharide is the more appropriate substance for elaboration of the drugs with high selective metal binding properties

    Multiwavelength behaviour of the blazar 3C 279: Decade-long study from γ -ray to radio

    Get PDF
    We report the results of decade-long (2008-2018) γ -ray to 1 GHz radio monitoring of the blazar 3C 279, including GASP/WEBT, Fermi and Swift data, as well as polarimetric and spectroscopic data. The X-ray and γ -ray light curves correlate well, with no delay ≳ 3 h, implying general cospatiality of the emission regions. The γ -ray-optical flux-flux relation changes with activity state, ranging from a linear to amore complex dependence. The behaviour of the Stokes parameters at optical and radio wavelengths, including 43 GHz Very Long Baseline Array images, supports either a predominantly helical magnetic field or motion of the radiating plasma along a spiral path. Apparent speeds of emission knots range from 10 to 37c, with the highest values requiring bulk Lorentz factors close to those needed to explain γ -ray variability on very short time-scales. The MgII emission line flux in the 'blue' and 'red' wings correlates with the optical synchrotron continuum flux density, possibly providing a variable source of seed photons for inverse Compton scattering. In the radio bands, we find progressive delays of the most prominent light-curve maxima with decreasing frequency, as expected from the frequency dependence of the τ= 1 surface of synchrotron self-absorption. The global maximum in the 86 GHz light curve becomes less prominent at lower frequencies, while a local maximum, appearing in 2014, strengthens toward decreasing frequencies, becoming pronounced at ∼5 GHz. These tendencies suggest different Doppler boosting of stratified radio-emitting zones in the jet. © 2020 The Author(s).We thank the referee for attentive reading and comments that helped to improve presentation of the manuscript. The data collected by the WEBT collaboration are stored in the WEBT archive at the Osservatorio Astrofisico di Torino -INAF (ht tp://www.oato.inaf.it/blazars/webt/); for questions regarding their availability, please contact the WEBT President Massimo Villata([email protected]).TheSt.Petersburg University team acknowledges support from Russian Science Foundation grant 17-12-01029. The research at BU was supported in part by National Science Foundation grant AST-1615796 and NASA Fermi Guest Investigator grants 80NSSC17K0649, 80NSSC19K1504, and 80NSSC19K1505. The PRISM camera at Lowell Observatory was developed by K. Janes et al. at BU and Lowell Observatory, with funding from the NSF, BU, and Lowell Observatory. The emission-line observations made use of the DCT at Lowell Observatory, supported by Discovery Communications, Inc., BU, the University of Maryland, the University of Toledo, and Northern Arizona University. The VLBA is an instrument of the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the US NSF, operated under cooperative agreement by Associated Universities, Inc. This research has used data from the UMRAO which was supported by the University of Michigan; research at this facility was supported by NASA under awards NNX09AU16G, NNX10AP16G, NNX11AO13G, and NNX13AP18G, and by the NSF under award AST-0607523. The Steward Observatory spectropolarimetric monitoring project was supported by NASA Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, NNX12AO93G, and NNX15AU81G. The Torino group acknowledges financial contribution from agreement ASI-INAF n.2017-14-H.0 and from contract PRIN-SKA-CTA-INAF 2016. I.A. acknowledges support by a Ramon y Cajal grant (RYC-2013-14511) of the 'Ministerio de Ciencia, Innovacion, y Universidades (MICIU)' of Spain and from MCIU through the 'Center of Excellence Severo Ochoa' award for the Instituto de Astrofisica de Andalucia-CSIC (SEV-20170709). Acquisition and reduction of the POLAMI and MAPCAT data were supported by MICIU through grant AYA2016-80889-P. The POLAMI observations were carried out at the IRAM 30-m Telescope, supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The MAPCAT observations were carried out at theGerman-Spanish Calar Alto Observatory, jointly operated by the Max-Plank-Institut fur Astronomie and the Instituto de Astrofisica de Andalucia-CSIC. The study is based partly on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC. The OVRO 40-m monitoring program is supported in part by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G, and NSF grants AST-0808050 and AST-1109911. TH was supported by the Academy of Finland projects 317383 and 320085. AZT-24 observations were made within an agreement between Pulkovo, Rome and Teramo observatories. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The Abastumani team acknowledges financial support by the Shota Rustaveli National Science Foundation under contract FR/217950/16. r This research was partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grants DN 081/2016, DN 18-13/2017, KP-06-H28/3 (2018), and KP-06-PN38/1 (2019), Bulgarian National Science Programme 'Young Scientists and Postdoctoral Students 2019', Bulgarian National Science Fund under grant DN18-10/2017 and National RI Roadmap Projects DO1-157/28.08.2018 and DO1-153/28.08.2018 of the Ministry of Education and Science of the Republic of Bulgaria. GD and OV gratefully acknowledge observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory via bilateral joint research project `Study of ICRF radio-sources and fast variable astronomical objects' (head -G. Damljanovic). This work was partly supported by the National Science Fund of the Ministry of Education and Science of Bulgaria under grant DN 08-20/2016, and by project RD-08-37/2019 of the University of Shumen. This work is a part of projects nos 176011, 176004, and 176021, supported by theMinistry of Education, Science and Technological Development of the Republic of Serbia. MGM acknowledges support through the Russian Government Program of Competitive Growth of Kazan Federal University. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the 'Unite des Communes vald 'otainesMont-Emilius'. The research at the OAVdA was partially funded by several `Research and Education' annual grants from Fondazione CRT. This article is partly based on observations made with the IAC80 and TCS telescopes operated by the Instituto de Astrofisica de Canarias in the Spanish Observatorio del Teide on the island of Tenerife. A part of the observations were carried out using theRATAN-600 scientific equipment (SAO of the Russian Academy of Sciences)

    Preparation of Hydrogels Based on Modified Pectins by Tuning Their Properties for Anti-Glioma Therapy

    No full text
    The extracellular matrix (ECM) of the central nervous system (CNS), characterized by low stiffness and predominance of carbohydrates on protein components, mediates limited cell proliferation and migration. Pectins are polysaccharides derived from plants and could be very promising for a tunable hydrogel design that mimics the neural ECM. Aiming to regulate gel structure and viscoelastic properties, we elaborated 10 variants of pectin-based hydrogels via tuning the concentration of the polymer and the number of free carboxyl groups expressed in the degree of esterification (DE). Viscoelastic properties of hydrogels varied in the range of 3 to 900 Pa for G′ and were chosen as the first criteria for the selection of variants suitable for CNS remodeling. For extended reciprocal characterization, two pairs of hydrogels were taken to test pectins with opposite DEs close to 0% and 50%, respectively, but with a similar rheology exceeding 100 Pa (G′), which was achieved by adjusting the concentration of pectin. Hydrogel swelling properties and in vitro stability, together with structure characterization using SEM and FTIR spectroscopy, displayed some differences that may sense for biomedical application. Bioassays on C6 and U87MG glioblastoma cultures testified the potential prospects of the anti-glioma activity of hydrogels developed by decreasing cell proliferation and modulating migration but supporting the high viability of neural cells
    corecore