56 research outputs found

    LM radar reflectivity simulation Final report

    Get PDF
    Ultrasonic simulation of lunar module radar reflectivit

    Photoelectric Properties of MOS-like Structures with Twofold SRO Films

    Get PDF
    AbstractThe optical properties of silicon rich oxide (SRO) have been deeply studied because, between other reasons, they emit an intense photoluminescence (PL) from visible to the near infrared range when excited with UV light. MOS-like structures with SRO film as the active layer have shown an enhanced conductivity under different illumination conditions. In this paper, MOS-like structures with double SRO layer were fabricated in order to have a barrier to isolate the silicon substrate from the active SRO layer. Results show that all structures have a higher current when light shines on them than that obtained under dark conditions. A possible application of this photo-effect can be used to increase the response of photodetectors and silicon solar cells

    Metal-THINGS: The association and optical characterization of SNRs with HI holes in NGC 6946

    Get PDF
    NGC~6946, also known as the `Fireworks' galaxy, is an unusual galaxy that hosts a total of 225 supernova remnant (SNR) candidates, including 147 optically identified with high [SII]/Ha line ratios. In addition, this galaxy shows prominent HI holes, which were analyzed in previous studies. Indeed, the connection between SNRs and HI holes together with their physical implications in the surrounding gas is worth of attention. This paper explores the connection between the SNRs and the HI holes, including an analysis of their physical link to observational optical properties inside and around the rims of the holes, using new integral field unit (IFU) data from the Metal-THINGS survey. We present an analysis combining previously identified HI holes, SNRs candidates, and new integral field unit (IFU) data from Metal-THINGS of the spiral galaxy NGC 6946. We analyze the distributions of the oxygen abundance, star formation rate surface density, extinction, ionization, diffuse ionized gas, and the Baldwin-Phillips-Terlevich classification throughout the galaxy. By analyzing in detail the optical properties of the 121 previously identify HI holes in NGC 6946, we find that the SNRs are concentrated at the rims of the HI holes. Furthermore, our IFU data shows that the star formation rate and extinction are enhanced at the rims of the holes. To a lesser degree, the oxygen abundance and ionization parameter show hints of enhancement on the rims of the holes. Altogether, this provides evidence of induced star formation taking place at the rims of the holes, whose origin can be explained by the expansion of superbubbles created by multiple supernova explosions in large stellar clusters dozens of Myr ago.Comment: Accepted by A&

    Enterprise transformation: Why are we interested, what is it, and what are the challenges?

    Get PDF
    © IIE, INCOSE. The concept of enterprise transformation has become increasingly popular as companies recognize the need to achieve an integrated perspective within and across organizational boundaries to address complex challenges. Yet, there is little clarity concerning what constitutes an “enterprise” or indeed “enterprise transformation.” This article is conceived as an initial step along the journey towards this clarity. There is considerable work to be done in delineating this area of interest and this article is offered as a stimulus for debate on what constitutes enterprise transformation. Drawing on themes from the management and systems engineering disciplines, the article will propose four characteristics of “enterprise” as a unit for transformation and look at why this holistic unit of analysis has become critical to businesses. The article will also ask what constitutes transformation, and offer characterizing criteria to distinguish this magnitude of change from more incremental changes. A recent empirical case study will be examined to further elucidate challenges faced in defining, leading, and transforming multi-organizational enterprises. Finally, a near-term research agenda is outlined for the evolving discipline of enterprise transformation

    Subject - specific - frequency - band for motor imagery EEG signal recognition based on common spatial spectral pattern

    Get PDF
    Over the last decade, processing of biomedical signals using machine learning algorithms has gained widespread attention. Amongst these, one of the most important signals is electroencephalography (EEG) signal that is used to monitor the brain activities. Brain-computer-interface (BCI) has also become a hot topic of research where EEG signals are usually acquired using non-invasive sensors. In this work, we propose a scheme based on common spatial spectral pattern (CSSP) and optimization of temporal filters for improved motor imagery (MI) EEG signal recognition. CSSP is proposed as it improves the spatial resolution while the temporal filter is optimized for each subject as the frequency band which contains most significant information varies amongst different subjects. The proposed scheme is evaluated using two publicly available datasets: BCI competition III dataset IVa and BCI competition IV dataset 1. The proposed scheme obtained promising results and outperformed other state-of-the-art methods. The findings of this work will be beneficial for developing improved BCI systems
    corecore