922 research outputs found
The Planck Low Frequency Instrument
The Low Frequency Instrument (LFI) of the "Planck Surveyor" ESA mission will
perform high-resolution imaging of the Cosmic Microwave Background anisotropies
at four frequencies in the 30-100 GHz range. We review the LFI main scientific
objectives, the current status of the instrument design and the on-going effort
to develop software simulations of the LFI observations. In particular we
discuss the design status of the PLANCK telescope, which is critical for
reaching adequate effective angular resolution.Comment: 10 pages, Latex (use epsfig.sty); 4 Postscript figures; Astrophys.
Lett & Comm, in press. Proc. of the Conference: "The Cosmic Microwave
Background and the Planck Mission", Santander, Spain, 22-25 June 199
Dynamic validation of the Planck/LFI thermal model
The Low Frequency Instrument (LFI) is an array of cryogenically cooled
radiometers on board the Planck satellite, designed to measure the temperature
and polarization anisotropies of the cosmic microwave backgrond (CMB) at 30, 44
and 70 GHz. The thermal requirements of the LFI, and in particular the
stringent limits to acceptable thermal fluctuations in the 20 K focal plane,
are a critical element to achieve the instrument scientific performance.
Thermal tests were carried out as part of the on-ground calibration campaign at
various stages of instrument integration. In this paper we describe the results
and analysis of the tests on the LFI flight model (FM) performed at Thales
Laboratories in Milan (Italy) during 2006, with the purpose of experimentally
sampling the thermal transfer functions and consequently validating the
numerical thermal model describing the dynamic response of the LFI focal plane.
This model has been used extensively to assess the ability of LFI to achieve
its scientific goals: its validation is therefore extremely important in the
context of the Planck mission. Our analysis shows that the measured thermal
properties of the instrument show a thermal damping level better than
predicted, therefore further reducing the expected systematic effect induced in
the LFI maps. We then propose an explanation of the increased damping in terms
of non-ideal thermal contacts.Comment: Planck LFI technical papers published by JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022
Planck Low Frequency Instrument: Beam Patterns
The Low Frequency Instrument on board the ESA Planck satellite is coupled to
the Planck 1.5 meter off-axis dual reflector telescope by an array of 27
corrugated feed horns operating at 30, 44, 70, and 100 GHz. We briefly present
here a detailed study of the optical interface devoted to optimize the angular
resolution (10 arcmin at 100 GHz as a goal) and at the same time to minimize
all the systematics coming from the sidelobes of the radiation pattern. Through
optical simulations, we provide shapes, locations on the sky, angular
resolutions, and polarization properties of each beam.Comment: On behalf of the Planck collaboration. 3 pages, 1 figure. Article
published in the Proceedings of the 2K1BC Experimental Cosmology at
millimetre wavelength
The Planck-LFI flight model composite waveguides
The Low Frequency Instrument on board the PLANCK satellite is designed to
give the most accurate map ever of the CMB anisotropy of the whole sky over a
broad frequency band spanning 27 to 77 GHz. It is made of an array of 22
pseudo-correlation radiometers, composed of 11 actively cooled (20 K) Front End
Modules (FEMs), and 11 Back End Modules (BEMs) at 300K. The connection between
the two parts is made with rectangular Wave Guides. Considerations of different
nature (thermal, electromagnetic and mechanical), imposed stringent
requirements on the WGs characteristics and drove their design. From the
thermal point of view, the WG should guarantee good insulation between the FEM
and the BEM sections to avoid overloading the cryocooler. On the other hand it
is essential that the signals do not undergo excessive attenuation through the
WG. Finally, given the different positions of the FEM modules behind the focal
surface and the mechanical constraints given by the surrounding structures,
different mechanical designs were necessary. A composite configuration of
Stainless Steel and Copper was selected to satisfy all the requirements. Given
the complex shape and the considerable length (about 1.5-2 m), manufacturing
and testing the WGs was a challenge. This work deals with the development of
the LFI WGs, including the choice of the final configuration and of the
fabrication process. It also describes the testing procedure adopted to fully
characterize these components from the electromagnetic point of view and the
space qualification process they underwent. Results obtained during the test
campaign are reported and compared with the stringent requirements. The
performance of the LFI WGs is in line with requirements, and the WGs were
successfully space qualified.Comment: this paper is part of the Prelaunch status LFI papers published on
JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins
On the performance of Planck-like telescopes versus mirror aperture
Future space mission like MAP and PLANCK will be able to shade new light on our knowledge of the Universe thanks to their unprecedented angular resolution and sensitivity. The far sub-degree angular resolution is obtained coupling usual detectors, radiometers and/or bolometers, to an optical system, namely a telescope. The wealth of cosmological information is encoded at high l values (~1000) which can be reached with resolution of about 10′. Distortions of the main beam resulting from the current focal plane arrangement and the optical design of the PLANCK satellite will degrade angular resolution and sensitivity per resolution element possibly compromising the final results. The detailed design of the PLANCK telescope is continuously changing with the aim of optimizing its performance. In the present work we present a methodological study on the relation between telescope optical design, focal plane arrangement and optical performances, focussing on the dependence of angular resolution on primary mirror aperture. Different independent approaches have been developed to quantify the impact of main beam distortions on cosmic microwave background (CMB) science yielding nearly the same results. The so-called PHASE-A telescope is unacceptable with respect mission main goals. Larger telescopes (namely with effective aperture ≳ 1.5 m) are therefore preferable. This paper is based on the PLANCK LFI activities.
Thermal susceptibility of the Planck-LFI receivers
This paper is part of the Prelaunch status LFI papers published on JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/jinst .
This paper describes the impact of the Planck Low Frequency Instrument front
end physical temperature fluctuations on the output signal. The origin of
thermal instabilities in the instrument are discussed, and an analytical model
of their propagation and impact on the receivers signal is described. The
experimental test setup dedicated to evaluate these effects during the
instrument ground calibration is reported together with data analysis methods.
Finally, main results obtained are discussed and compared to the requirements.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in Journal of Instrumentation. IOP Publishing Ltd is
not responsible for any errors or omissions in this version of the manuscript
or any version derived from it. The definitive publisher authenticated
version is available online at 10.1088/1748-0221/4/12/T1201
Imaging the first light: experimental challenges and future perspectives in the observation of the Cosmic Microwave Background Anisotropy
Measurements of the cosmic microwave background (CMB) allow high precision
observation of the Last Scattering Surface at redshift 1100. After the
success of the NASA satellite COBE, that in 1992 provided the first detection
of the CMB anisotropy, results from many ground-based and balloon-borne
experiments have showed a remarkable consistency between different results and
provided quantitative estimates of fundamental cosmological properties. During
2003 the team of the NASA WMAP satellite has released the first improved
full-sky maps of the CMB since COBE, leading to a deeper insight into the
origin and evolution of the Universe. The ESA satellite Planck, scheduled for
launch in 2007, is designed to provide the ultimate measurement of the CMB
temperature anisotropy over the full sky, with an accuracy that will be limited
only by astrophysical foregrounds, and robust detection of polarisation
anisotropy. In this paper we review the experimental challenges in high
precision CMB experiments and discuss the future perspectives opened by second
and third generation space missions like WMAP and Planck.Comment: To be published in "Recent Research Developments in Astronomy &
Astrophysics Astrophysiscs" - Vol I
The Planck Telescope
In this paper we present an overview of the Telescope designed for ESA's
mission dedicated to map the Cosmic Microwave Background Anisotropies and
Polarization. Two instruments, LFI and HFI, operate in an overall frequency
range between 25 and 900 GHz and share the focal region of the 1.5 meter
optimized telescope. The optimization techniques adopted for the optical design
and the telescope characteristic are reported and discussed.Comment: On behalf of the Planck collaboration. 5 pages, 4 figures. The
following article has been submitted for publication in the AIP Proceedings
of the Workshop on "Experimental Cosmology at millimeter wavelengths",
Cervinia, Italy, 9-13 July 200
The linearity response of the Planck-LFI flight model receivers
In this paper we discuss the linearity response of the Planck-LFI receivers,
with particular reference to signal compression measured on the 30 and 44 GHz
channels. In the article we discuss the various sources of compression and
present a model that accurately describes data measured during tests performed
with individual radiomeric chains. After discussing test results we present the
best parameter set representing the receiver response and discuss the impact of
non linearity on in-flight calibration, which is shown to be negligible.Comment: this paper is part of the Prelaunch status LFI papers published on
JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst; This is an
author-created, un-copyedited version of an article accepted for publication
in JINST. IOP Publishing Ltd is not responsible for any errors or omissions
in this version of the manuscript or any version derived from it. The
definitive publisher authenticated version is available online at
10.1088/1748-0221/4/12/T12011
- …