40 research outputs found

    Экологическая оценка пространственно-временной изменчивости почвенной эмиссии N 2O на лесном участке природного заказника «Петровско-Разумовское»

    Get PDF
    In article deal with the problem of greenhouse effect and the influence of global climate change on environmental condition of modern megalopolis, on the example of Moscow. The research are focused on nitrogen oxide (I), which is one of the least studied greenhouse gases. Research were carried out in the territory of Forest Experimental Station RGAU-MSHA named after K.A. Timiryazev since May till September, 2013.В статье говорится о проблеме парникового эффекта и воздействии глобального изменения климата на экологическую обстановку в современном мегаполисе на примере Москвы. Рассматривается один из наименее изученных парниковых газов - оксид азота (I), исследования которого проводились на территории ЛОД РГАУ-МСХА имени Тимирязева с мая по сентябрь 2013 г

    Small BGK waves and nonlinear Landau damping

    Full text link
    Consider 1D Vlasov-poisson system with a fixed ion background and periodic condition on the space variable. First, we show that for general homogeneous equilibria, within any small neighborhood in the Sobolev space W^{s,p} (p>1,s<1+(1/p)) of the steady distribution function, there exist nontrivial travelling wave solutions (BGK waves) with arbitrary minimal period and traveling speed. This implies that nonlinear Landau damping is not true in W^{s,p}(s<1+(1/p)) space for any homogeneous equilibria and any spatial period. Indeed, in W^{s,p} (s<1+(1/p)) neighborhood of any homogeneous state, the long time dynamics is very rich, including travelling BGK waves, unstable homogeneous states and their possible invariant manifolds. Second, it is shown that for homogeneous equilibria satisfying Penrose's linear stability condition, there exist no nontrivial travelling BGK waves and unstable homogeneous states in some W^{s,p} (p>1,s>1+(1/p)) neighborhood. Furthermore, when p=2,we prove that there exist no nontrivial invariant structures in the H^{s} (s>(3/2)) neighborhood of stable homogeneous states. These results suggest the long time dynamics in the W^{s,p} (s>1+(1/p)) and particularly, in the H^{s} (s>(3/2)) neighborhoods of a stable homogeneous state might be relatively simple. We also demonstrate that linear damping holds for initial perturbations in very rough spaces, for linearly stable homogeneous state. This suggests that the contrasting dynamics in W^{s,p} spaces with the critical power s=1+(1/p) is a trully nonlinear phenomena which can not be traced back to the linear level

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Constraints on the cosmic expansion history from GWTC–3

    Get PDF
    We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0=688+12km  s1Mpc1{H}_{0}={68}_{-8}^{+12}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8km  s1Mpc1{H}_{0}={68}_{-6}^{+8}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814

    GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object

    Get PDF
    We report the observation of a compact binary coalescence involving a 22.2–24.3 Me black hole and a compact object with a mass of 2.50–2.67 Me (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s and Virgo’s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of - + 241 45 41 Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, - + 0.112 0.009 0.008, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to �0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries

    A land-based approach for climate change mitigation in the livestock sector

    No full text
    Greenhouse gas (GHG) emissions from agriculture, forestry and other land uses (AFOLU sector) cover the 24% of global emissions, representing the second hot spot in the contribution to climate change after the energy sector. Thus, the land sector plays a crucial role in the context of climate change, being both a contributor to the problem and part of its solution, particularly thanks to the capacity of soils and biomass to sequester atmospheric carbon. The challenge of this paper is to understand the extent to which sustainable land management can be a valuable solution for increasing the mitigation potential of the land sector, particularly at small-scale rural landscape level.The paper presents and tests a land-based approach to be applied at small-scale rural landscape level, aiming at reducing and offsetting GHG emissions from the livestock activities, one of the main sources of GHG emissions of the whole agricultural sector. The proposed land-based approach builds on an ensemble of methodologies, including Geographic Information System (GIS) elaboration, Life Cycle Assessment (LCA) and methodologies from the Intergovernmental Panel on Climate Change (IPCC), that allow estimating livestock GHG emissions and the mitigation potential of sustainable land-use options applied in the same small-scale rural landscape.Results from a case study in Italy show that land-based mitigation options applied at small-scale rural landscape level can reduce and completely offset the GHG livestock emissions of the same area, leading to carbon neutral livestock systems. Thus, this study confirms that the land sector can strongly contribute to climate change mitigation if sustainable land-use options are applied. © 2020 Elsevier Lt
    corecore