422 research outputs found
Functional diversity of marine ecosystems after the Late Permian mass extinction event
Article can be accessed from http://www.nature.com/ngeo/journal/v7/n3/full/ngeo2079.htmlThe Late Permian mass extinction event was the most severe such crisis of the past 500 million years and occurred during an episode of global warming. It is assumed to have had significant ecological impact, but its effects on marine ecosystem functioning are unknown and the patterns of marine recovery are debated. We analysed the fossil occurrences of all known Permian-Triassic benthic marine genera and assigned each to a functional group based on their inferred life habit. We show that despite the selective extinction of 62-74% of marine genera there was no significant loss of functional diversity at the global scale, and only one novel mode of life originated in the extinction aftermath. Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed, which explains the absence of a Cambrian-style Triassic radiation in higher taxa. Functional diversity was, however, significantly reduced in particular regions and habitats, such as tropical reefs, and at these scales recovery varied spatially and temporally, probably driven by migration of surviving groups. Marine ecosystems did not return to their pre-extinction state, however, and radiation of previously subordinate groups such as motile, epifaunal grazers led to greater functional evenness by the Middle Triassic
“Emotional Exhaustion and Perceived Corporate Social Responsibility: A Case Study of a Port Logistics Organization”
In an era of economic crisis, and at the shadow of major ethical scandals in organizations, Corporate Social Responsibility (CSR) strategy has emerged as a crucial element to reestablish the bond between corporations and all other stakeholders such as the local community, society and labor force. Crisis makes employees more stressful, since they work on unwarranted jobs causing them emotional exhaustion. This study aims to examine the association between employee emotional exhaustion and perceived corporate social responsibility (CSR). For this purpose, this study conducted a survey which examines if CSR (ethical, social, environmental dimensions) is negatively related to emotional exhaustion of employees on a sample of 93 employees of a port logistics management services organization. A structured questionnaire was developed in order to measure emotional exhaustion and employee perceptions about CSR activities. Building on the claim that employee perceptions of CSR activities may significantly related to emotional state, this paper examines three CSR dimensions (social, ethical and environmental) and emotional exhaustion. The results of this study indicate that environmental CSR exerts a negative significant effect on Emotional exhaustion. These finding will be of great value as they can contribute on understanding the impact of environmental CSR on emotional exhaustion with detrimental effects on employees’ productivity, job performance, and creativity. The importance of CSR environmental aspects and the relative strategies guiding CSR impact on emotional exhaustion affecting job-related outcomes are also discussed
Plasmonic Luneburg and Eaton Lenses
Plasmonics is an interdisciplinary field focusing on the unique properties of
both localized and propagating surface plasmon polaritons (SPPs) -
quasiparticles in which photons are coupled to the quasi-free electrons of
metals. In particular, it allows for confining light in dimensions smaller than
the wavelength of photons in free space, and makes it possible to match the
different length scales associated with photonics and electronics in a single
nanoscale device. Broad applications of plasmonics have been realized including
biological sensing, sub-diffraction-limit imaging, focusing and lithography,
and nano optical circuitry. Plasmonics-based optical elements such as
waveguides, lenses, beam splitters and reflectors have been implemented by
structuring metal surfaces or placing dielectric structures on metals, aiming
to manipulate the two-dimensional surface plasmon waves. However, the abrupt
discontinuities in the material properties or geometries of these elements lead
to increased scattering of SPPs, which significantly reduces the efficiency of
these components. Transformation optics provides an unprecedented approach to
route light at will by spatially varying the optical properties of a material.
Here, motivated by this approach, we use grey-scale lithography to
adiabatically tailor the topology of a dielectric layer adjacent to a metal
surface to demonstrate a plasmonic Luneburg lens that can focus SPPs. We also
realize a plasmonic Eaton lens that can bend SPPs. Since the optical properties
are changed gradually rather than abruptly in these lenses, losses due to
scattering can be significantly reduced in comparison with previously reported
plasmonic elements.Comment: Accepted for publication in Nature Nanotechnolog
Past Achievements and Future Challenges in 3D Photonic Metamaterials
Photonic metamaterials are man-made structures composed of tailored micro- or
nanostructured metallo-dielectric sub-wavelength building blocks that are
densely packed into an effective material. This deceptively simple, yet
powerful, truly revolutionary concept allows for achieving novel, unusual, and
sometimes even unheard-of optical properties, such as magnetism at optical
frequencies, negative refractive indices, large positive refractive indices,
zero reflection via impedance matching, perfect absorption, giant circular
dichroism, or enhanced nonlinear optical properties. Possible applications of
metamaterials comprise ultrahigh-resolution imaging systems, compact
polarization optics, and cloaking devices. This review describes the
experimental progress recently made fabricating three-dimensional metamaterial
structures and discusses some remaining future challenges
Metal-Free ALS Variants of Dimeric Human Cu,Zn-Superoxide Dismutase Have Enhanced Populations of Monomeric Species
Amino acid replacements at dozens of positions in the dimeric protein human, Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS). Although it has long been hypothesized that these mutations might enhance the populations of marginally-stable aggregation-prone species responsible for cellular toxicity, there has been little quantitative evidence to support this notion. Perturbations of the folding free energy landscapes of metal-free versions of five ALS-inducing variants, A4V, L38V, G93A, L106V and S134N SOD1, were determined with a global analysis of kinetic and thermodynamic folding data for dimeric and stable monomeric versions of these variants. Utilizing this global analysis approach, the perturbations on the global stability in response to mutation can be partitioned between the monomer folding and association steps, and the effects of mutation on the populations of the folded and unfolded monomeric states can be determined. The 2- to 10-fold increase in the population of the folded monomeric state for A4V, L38V and L106V and the 80- to 480-fold increase in the population of the unfolded monomeric states for all but S134N would dramatically increase their propensity for aggregation through high-order nucleation reactions. The wild-type-like populations of these states for the metal-binding region S134N variant suggest that even wild-type SOD1 may also be prone to aggregation in the absence of metals
Teamwork in a coronary care unit: facilitating and hindering aspects
Abstract OBJECTIVE To identify, within a multidisciplinary team, the facilitating and hindering aspects for teamwork in a coronary care unit. METHOD A descriptive study, with qualitative and quantitative data, was carried out in the coronary care unit of a public hospital. The study population consisted of professionals working in the unit for at least one year. Those who were on leave or who were not located were excluded. The critical incident technique was used for data collection, by means of semi-structured interviews. For data analysis, content analysis and the critical incident technique were applied. RESULTS Participants were 45 professionals: 29 nursing professionals; 11 physicians; 4 physical therapists; and 1 psychologist. A total of 49 situations (77.6% with negative references); 385 behaviors (54.2% with positive references); and 182 consequences emerged (71.9% with negative references). Positive references facilitate teamwork, whereas negative references hinder it. A collaborative/communicative interprofessional relationship was evidenced as a facilitator; whereas poor collaboration among agents/inadequate management was a hindering aspect. CONCLUSION Despite the prevalence of negative situations and consequences, the emphasis on positive behaviors reveals the efforts the agents make in order to overcome obstacles and carry out teamwork
Characterization of Bacteria in Ballast Water Using MALDI-TOF Mass Spectrometry
To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time
Evaluating teaching effectiveness in nursing education:An Iranian perspective
BACKGROUND: The main objective of this study was to determine the perceptions of Iranian nurse educators and students regarding the evaluation of teaching effectiveness in university-based programs. METHODS: An exploratory descriptive design was employed. 143 nurse educators in nursing faculties from the three universities in Tehran, 40 undergraduate, and 30 graduate students from Tehran University composed the study sample. In addition, deans from the three nursing faculties were interviewed. A researcher-developed questionnaire was used to determine the perceptions of both faculty and students about evaluating the teaching effectiveness of nurse educators, and an interview guide was employed to elicit the views of deans of faculties of nursing regarding evaluation policies and procedures. Data were analyzed using parametric and nonparametric statistics to identify similarities and differences in perceptions within the Iranian nurse educator group and the student group, and between these two groups of respondents. RESULTS: While faculty evaluation has always been a major part of university based nursing programs, faculty evaluation must be approached more analytically, objectively, and comprehensively to ensure that all nursing educators receive the fairest treatment possible and that the teaching-learning process is enhanced. CONCLUSION: Educators and students stressed that systematic and continuous evaluation as well as staff development should be the primary goals for the faculty evaluation process. The ultimate goals is the improvement of teaching by nurse educators
Difference between pre-operative and cardiopulmonary bypass mean arterial pressure is independently associated with early cardiac surgery-associated acute kidney injury
<p>Abstract</p> <p>Background</p> <p>Cardiac surgery-associated acute kidney injury (CSA-AKI) contributes to increased morbidity and mortality. However, its pathophysiology remains incompletely understood. We hypothesized that intra-operative mean arterial pressure (MAP) relative to pre-operative MAP would be an important predisposing factor for CSA-AKI.</p> <p>Methods</p> <p>We performed a prospective observational study of 157 consecutive high-risk patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). The primary exposure was delta MAP, defined as the pre-operative MAP minus average MAP during CPB. Secondary exposure was CPB flow. The primary outcome was early CSA-AKI, defined by a minimum RIFLE class - RISK. Univariate and multivariate logistic regression were performed to explore for association between delta MAP and CSA-AKI.</p> <p>Results</p> <p>Mean (± SD) age was 65.9 ± 14.7 years, 70.1% were male, 47.8% had isolated coronary bypass graft (CABG) surgery, 24.2% had isolated valve surgery and 16.6% had combined procedures. Mean (± SD) pre-operative, intra-operative and delta MAP were 86.6 ± 13.2, 57.4 ± 5.0 and 29.4 ± 13.5 mmHg, respectively. Sixty-five patients (41%) developed CSA-AKI within in the first 24 hours post surgery. By multivariate logistic regression, a delta MAP≥26 mmHg (odds ratio [OR], 2.8; 95%CI, 1.3-6.1, p = 0.009) and CPB flow rate ≥54 mL/kg/min (OR, 0.2, 0.1-0.5, p < 0.001) were independently associated with CSA-AKI. Additional variables associated with CSA-AKI included use of a side-biting aortic clamp (OR, 3.0; 1.3-7.1, p = 0.012), and body mass index ≥25 (OR, 4.2; 1.6-11.2, p = 0.004).</p> <p>Conclusion</p> <p>A large delta MAP and lower CPB flow during cardiac surgery are independently associated with early post-operative CSA-AKI in high-risk patients. Delta MAP represents a potentially modifiable intra-operative factor for development of CSA-AKI that necessitates further inquiry.</p
- …