87 research outputs found

    Disorders of compulsivity: a common bias towards learning habits.

    Get PDF
    Why do we repeat choices that we know are bad for us? Decision making is characterized by the parallel engagement of two distinct systems, goal-directed and habitual, thought to arise from two computational learning mechanisms, model-based and model-free. The habitual system is a candidate source of pathological fixedness. Using a decision task that measures the contribution to learning of either mechanism, we show a bias towards model-free (habit) acquisition in disorders involving both natural (binge eating) and artificial (methamphetamine) rewards, and obsessive-compulsive disorder. This favoring of model-free learning may underlie the repetitive behaviors that ultimately dominate in these disorders. Further, we show that the habit formation bias is associated with lower gray matter volumes in caudate and medial orbitofrontal cortex. Our findings suggest that the dysfunction in a common neurocomputational mechanism may underlie diverse disorders involving compulsion.This study was funded by the WT fellowship grant for VV (093705/Z/ 10/Z) and Cambridge NIHR Biomedical Research Centre. VV and NAH are Wellcome Trust (WT) intermediate Clinical Fellows. YW is supported by the Fyssen Fondation and MRC Studentships. PD is supported by the Gatsby Charitable Foundation. JEG has received grants from the National Institute of Drug Abuse and the National Center for Responsible Gaming. TWR and BJS are supported on a WT Programme Grant (089589/Z/09/Z). The BCNI is supported by a WT and MRC grant.This is the final published version. It's also available from Molecular Psychiatry at http://www.nature.com/mp/journal/vaop/ncurrent/full/mp201444a.html

    Valence-dependent influence of serotonin depletion on model-based choice strategy.

    Get PDF
    Human decision-making arises from both reflective and reflexive mechanisms, which underpin goal-directed and habitual behavioural control. Computationally, these two systems of behavioural control have been described by different learning algorithms, model-based and model-free learning, respectively. Here, we investigated the effect of diminished serotonin (5-hydroxytryptamine) neurotransmission using dietary tryptophan depletion (TD) in healthy volunteers on the performance of a two-stage decision-making task, which allows discrimination between model-free and model-based behavioural strategies. A novel version of the task was used, which not only examined choice balance for monetary reward but also for punishment (monetary loss). TD impaired goal-directed (model-based) behaviour in the reward condition, but promoted it under punishment. This effect on appetitive and aversive goal-directed behaviour is likely mediated by alteration of the average reward representation produced by TD, which is consistent with previous studies. Overall, the major implication of this study is that serotonin differentially affects goal-directed learning as a function of affective valence. These findings are relevant for a further understanding of psychiatric disorders associated with breakdown of goal-directed behavioural control such as obsessive-compulsive disorders or addictions.This research was funded by Wellcome Trust Grants awarded to VV (Intermediate WT Fellowship) and Programme Grant (089589/Z/09/Z) awarded to TWR, BJE, ACR, JWD and BJS. It was conducted at the Behavioural and Clinical Neuroscience Institute, which is supported by a joint award from the Medical Research Council and Wellcome Trust (G00001354). YW was supported by the Fyssen Foundation. SP is supported by Marie Curie Intra-European Fellowship (FP7-People-2012-IEF).This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/mp.2015.4

    Phosphorylation of p65(RelA) on Ser547 by ATM Represses NF-κB-Dependent Transcription of Specific Genes after Genotoxic Stress

    Get PDF
    The NF-κB pathway is involved in immune and inflammation responses, proliferation, differentiation and cell death or survival. It is activated by many external stimuli including genotoxic stress. DNA double-strand breaks activate NF-κB in an ATM-dependent manner. In this manuscript, a direct interaction between p65(RelA) and the N-terminal extremity of ATM is reported. We also report that only one of the five potential ATM-(S/T)Q target sites present in p65, namely Ser547, is specifically phosphorylated by ATM in vitro. A comparative transcriptomic analysis performed in HEK-293 cells expressing either wild-type HA-p65 or a non-phosphorylatable mutant HA-p65S547A identified several differentially transcribed genes after an etoposide treatment (e.g. IL8, A20, SELE). The transcription of these genes is increased in cells expressing the mutant. Substitution of Ser547 to alanine does not affect p65 binding abilities on the κB site of the IL8 promoter but reduces p65 interaction with HDAC1. Cells expressing p65S547A have a higher level of histone H3 acetylated on Lys9 at the IL8 promoter, which is in agreement with the higher gene induction observed. These results indicate that ATM regulates a sub-set of NF-κB dependent genes after a genotoxic stress by direct phosphorylation of p65

    Reward-Related Dorsal Striatal Activity Differences between Former and Current Cocaine Dependent Individuals during an Interactive Competitive Game

    Get PDF
    Cocaine addiction is characterized by impulsivity, impaired social relationships, and abnormal mesocorticolimbic reward processing, but their interrelationships relative to stages of cocaine addiction are unclear. We assessed blood-oxygenation-level dependent (BOLD) signal in ventral and dorsal striatum during functional magnetic resonance imaging (fMRI) in current (CCD; n = 30) and former (FCD; n = 28) cocaine dependent subjects as well as healthy control (HC; n = 31) subjects while playing an interactive competitive Domino game involving risk-taking and reward/punishment processing. Out-of-scanner impulsivity-related measures were also collected. Although both FCD and CCD subjects scored significantly higher on impulsivity-related measures than did HC subjects, only FCD subjects had differences in striatal activation, specifically showing hypoactivation during their response to gains versus losses in right dorsal caudate, a brain region linked to habituation, cocaine craving and addiction maintenance. Right caudate activity in FCD subjects also correlated negatively with impulsivity-related measures of self-reported compulsivity and sensitivity to reward. These findings suggest that remitted cocaine dependence is associated with striatal dysfunction during social reward processing in a manner linked to compulsivity and reward sensitivity measures. Future research should investigate the extent to which such differences might reflect underlying vulnerabilities linked to cocaine-using propensities (e.g., relapses)

    Association between substance use and psychosocial characteristics among adolescents of the Seychelles

    Get PDF
    BACKGROUND: We examined the associations between substance use (cigarette smoking, alcohol drinking, and cannabis use) and psychosocial characteristics at the individual and family levels among adolescents of the Seychelles, a rapidly developing small island state in the African region. METHODS: A school survey was conducted in a representative sample of 1432 students aged 11-17 years from all secondary schools. Data came from a self-administered anonymous questionnaire conducted along a standard methodology (Global School-based Health Survey, GSHS). Risk behaviors and psychosocial characteristics were dichotomized. Association analyses were adjusted for a possible classroom effect. RESULTS: The prevalence of cigarette smoking, alcohol drinking and cannabis use was higher in boys than in girls and increased with age. Age-adjusted and multivariate analyses showed that several individual level characteristics (e.g. suicidal ideation and truancy) and family level characteristics (e.g. poor parental monitoring) were associated with substance use among students. CONCLUSIONS: Our results suggest that health promotion programs should simultaneously address multiple risk behaviors and take into account a wide range of psychosocial characteristics of the students at the individual and family levels

    Yeast IME2 Functions Early in Meiosis Upstream of Cell Cycle-Regulated SBF and MBF Targets

    Get PDF
    BACKGROUND: In Saccharomyces cerevisiae, the G1 cyclin/cyclin-dependent kinase (CDK) complexes Cln1,-2,-3/Cdk1 promote S phase entry during the mitotic cell cycle but do not function during meiosis. It has been proposed that the meiosis-specific protein kinase Ime2, which is required for normal timing of pre-meiotic DNA replication, is equivalent to Cln1,-2/Cdk1. These two CDK complexes directly catalyze phosphorylation of the B-type cyclin/CDK inhibitor Sic1 during the cell cycle to enable its destruction. As a result, Clb5,-6/Cdk1 become activated and facilitate initiation of DNA replication. While Ime2 is required for Sic1 destruction during meiosis, evidence now suggests that Ime2 does not directly catalyze Sic1 phosphorylation to target it for destabilization as Cln1,-2/Cdk1 do during the cell cycle. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that Sic1 is eventually degraded in meiotic cells lacking the IME2 gene (ime2Δ), supporting an indirect role of Ime2 in Sic1 destruction. We further examined global RNA expression comparing wild type and ime2Δ cells. Analysis of these expression data has provided evidence that Ime2 is required early in meiosis for normal transcription of many genes that are also periodically expressed during late G1 of the cell cycle. CONCLUSIONS/SIGNIFICANCE: Our results place Ime2 at a position in the early meiotic pathway that lies upstream of the position occupied by Cln1,-2/Cdk1 in the analogous cell cycle pathway. Thus, Ime2 may functionally resemble Cln3/Cdk1 in promoting S phase entry, or it could play a role even further upstream in the corresponding meiotic cascade

    The incidence of unpleasant dreams after sub-anaesthetic ketamine

    Get PDF
    Ketamine is an N-methyl-D-aspartate (NMDA)receptor antagonist with psychotogenic effects and for whichthere are diverse reports of whether pleasant or unpleasantdreams result during anaesthesia, post-operatively or aftersub-anaesthetic use. The aim was to assess in healthy volunteers the incidence ofunpleasant dreams over the three nights after receiving asub-anaesthetic dose of ketamine, in comparison to placebo,and with retrospective home nightmare frequency as acovariate.Thirty healthy volunteers completed questionnairesabout retrospective home dream recall and were then giveneither ketamine or placebo. Ketamine resulted in significantly more meandream unpleasantness relative to placebo and caused athreefold increase in the odds ratio for the incidence of anunpleasant dream. The number of dreams reported over thethree nights did not differ between the groups. Theincidence of unpleasant dreams after ketamine use waspredicted by retrospectively assessed nightmare frequencyat home.Ketamine causes unpleasant dreams over thethree post-administration nights. This may be evidence of aresidual psychotogenic effect that is not found on standardself-report symptomatology measures or a result of disturbedsleep electrophysiology. The results have theoretical implications for the relationship between nightmares and schizotypy

    Illuminating the life of GPCRs

    Get PDF
    The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented
    corecore