23 research outputs found
Water vapor oxidation of ferritic 441 and austenitic 316L stainless steels at 1100 °C for short duration
This is an open access article under the CC BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/International audienceA ferritic 441 and an austenitic 316L steels have been exposed to wet argon at 1100 °C. This study focus on the characterization of the oxide scales formed after different exposure times in the range of 2.5-20 min. Raman spectroscopy, XRD, SEM and XPS have been used. For all exposure times, 316L forms a breakaway type thick oxide scale (rupture of the pre-existing passivating film) with iron oxides on its outer part and a mix of spinels with Fe, Cr and Ni for its inner part. For lower water vapor partial pressure, iron oxides are constituted of wüstite. For higher water vapor partial pressure, iron oxides are constituted of a layer of hematite over a layer of magnetite slightly enriched in chromium. Due to strong oxidation condition, oxide scale is not always homogeneous and iron oxides spallation may occur. For 2.5 min of oxidation on 441, a very thin layer of protective chromium oxide is formed. For longer exposure time, an almost homogeneous and much thicker layer mainly consisting of Cr 2 O 3 is produced. The thickness varies slightly and gradually from 4 to 20 min of oxidation. There are Mn-Cr spinels mixed with the chromium oxide. The most external part is strongly enriched in Mn and Fe in a spinel structure. The diffusivity of chromium is regarded as the main cause of the difference of oxidation behavior. In both cases, the first step is a very thin chromium oxide layer. When the oxidation conditions becomes too strong in terms of exposure time or water vapor partial pressure, this oxide layer breaks. The ferritic steel is able to heal and thicken its protective chromium oxide, preventing the breakaway. The healing would be due to the high diffusivity of chromium. The thickening would be caused by the presence of the Mn-Cr spinels which are a less effective diffusion barrier. The lower diffusivity of chromium in austenite promotes the breakaway
Quasi-optical 2D system for non-contact non-destructive testing of defects in natural and artificial crystals
The results of development the automated system of two-dimensional diagnostics of defects of crystalline materials are presented. Used technology imaging. The structural scheme of the system is given, its main blocks are indicated, the approbation process is described, the software of the system is described
Scattering of quasi-optical THz beams on spherical MWCNTs aerogels
Results of research of lateral scattering of electromagnetic radiation by aerogel of MWCNTs are presented. Frequency dependences of lateral scattering of THz radiation of spherical MWCNTs aerogels with diameter of 4.5 and 6 mm at frequency range 43-970 GHz are given
Création de surfaces poreuses sur des aciers inoxydables par réduction d’oxydes sous H2 à haute température
A process for pore creation on the surface of two stainless steels, respectively austenitic and ferritic, has been investigated. That process follows two steps. An oxide scale with controlled thickness and composition is firstly generated by water vapour exposition at 1100 °C. That layer is subsequently reduced at high temperature by dihydrogen. The present work aims to better understand the mechanisms of pore formation and the influence of various reaction parameters on both oxidation and reduction course.A comprehensive characterisation of the oxide layers has been first performed. The main parameter is the alloy structure, austenitic or ferritic. The porous surfaces have been thereafter studied to establish step by step the formation mechanisms involved.It was demonstrated that the non-stoichiometry of iron oxides formerly developed on the austenitic steel is behind the pore growth mechanism on that steel.A new kind of porosity could be obtained through the preliminary building of chromium-rich oxide scales on the ferritic steel. The morphologies are in that case completely different as well as the pore formation mechanism. A specific process for the pore growth has been proposed.Un procédé de création de surfaces poreuses sur deux aciers inoxydables respectivement austénitique et ferritique a été étudié. Ce procédé est en deux étapes. Une couche d’oxyde, dont l’épaisseur et la composition sont contrôlées, est d’abord générée par de la vapeur d’eau à 1100 °C. Puis cette couche est ensuite réduite par du dihydrogène à haute température. Ces travaux ont pour objectifs de mieux comprendre les mécanismes de formation des pores ainsi que l’influence des divers paramètres de réaction, tant pour l’oxydation que pour la réduction.Une caractérisation complète des couches d’oxydes a été d’abord réalisée. Le principal paramètre influent est la structure de l’alliage, austénitique ou ferritique. Par la suite, les surfaces poreuses ont été étudiées afin d’établir, étape par étape, les mécanismes mis en jeu.Il a été établi que la non-stœchiométrie des oxydes de fer préalablement formés sur l’acier austénitique est à l’origine de la formation des pores sur la surface de cet acier.Un nouveau type de porosité a pu être obtenu par la formation préalable de couches d’oxydes riches en chrome formées sur l’acier ferritique. Les morphologies ainsi que les mécanismes sont ici totalement différents. Un processus de formation des pores spécifique a été proposé
Creation of porous surfaces on stainless steels by oxides reduction with H2 at high temperature
Un procédé de création de surfaces poreuses sur deux aciers inoxydables respectivement austénitique et ferritique a été étudié. Ce procédé est en deux étapes. Une couche d’oxyde, dont l’épaisseur et la composition sont contrôlées, est d’abord générée par de la vapeur d’eau à 1100 °C. Puis cette couche est ensuite réduite par du dihydrogène à haute température. Ces travaux ont pour objectifs de mieux comprendre les mécanismes de formation des pores ainsi que l’influence des divers paramètres de réaction, tant pour l’oxydation que pour la réduction.Une caractérisation complète des couches d’oxydes a été d’abord réalisée. Le principal paramètre influent est la structure de l’alliage, austénitique ou ferritique. Par la suite, les surfaces poreuses ont été étudiées afin d’établir, étape par étape, les mécanismes mis en jeu.Il a été établi que la non-stœchiométrie des oxydes de fer préalablement formés sur l’acier austénitique est à l’origine de la formation des pores sur la surface de cet acier.Un nouveau type de porosité a pu être obtenu par la formation préalable de couches d’oxydes riches en chrome formées sur l’acier ferritique. Les morphologies ainsi que les mécanismes sont ici totalement différents. Un processus de formation des pores spécifique a été proposé.A process for pore creation on the surface of two stainless steels, respectively austenitic and ferritic, has been investigated. That process follows two steps. An oxide scale with controlled thickness and composition is firstly generated by water vapour exposition at 1100 °C. That layer is subsequently reduced at high temperature by dihydrogen. The present work aims to better understand the mechanisms of pore formation and the influence of various reaction parameters on both oxidation and reduction course.A comprehensive characterisation of the oxide layers has been first performed. The main parameter is the alloy structure, austenitic or ferritic. The porous surfaces have been thereafter studied to establish step by step the formation mechanisms involved.It was demonstrated that the non-stoichiometry of iron oxides formerly developed on the austenitic steel is behind the pore growth mechanism on that steel.A new kind of porosity could be obtained through the preliminary building of chromium-rich oxide scales on the ferritic steel. The morphologies are in that case completely different as well as the pore formation mechanism. A specific process for the pore growth has been proposed
Characterization of Oxide Scales Formed on Ferritic Stainless Steel 441 at 1,100 °C under water vapor
International audienceThis study focuses on the characterization of the oxide scales formed after different exposure times in the range of 2.5-20 min. A commercially available ferritic steel grade AISI 441 was exposed to wet argon at 1100 °C with 5, 9 and 13% H2O. Raman microspectroscopy, XRD, EDS and XPS were used to fully characterize the oxide scale. For all samples exposed for over 4 min, the scale was constituted of three layers in this order: a thin top layer of spinel phases (Fe,Cr,Mn)3O4 with local outgrowths; a second and main layer of Cr2O3 + (Mn,Cr)3O4; and finally a bottom layer of SiO2. The uncommon presence of Fe in the top layer was also observed