1,200 research outputs found

    The PAU Survey and Euclid:Improving broadband photometric redshifts with multi-task learning

    Get PDF
    Current and future imaging surveys require photometric redshifts (photo-zs) to be estimated for millions of galaxies. Improving the photo-z quality is a major challenge but is needed to advance our understanding of cosmology. In this paper we explore how the synergies between narrow-band photometric data and large imaging surveys can be exploited to improve broadband photometric redshifts. We used a multi-task learning (MTL) network to improve broadband photo-z estimates by simultaneously predicting the broadband photo-z and the narrow-band photometry from the broadband photometry. The narrow-band photometry is only required in the training field, which also enables better photo-z predictions for the galaxies without narrow-band photometry in the wide field. This technique was tested with data from the Physics of the Accelerating Universe Survey (PAUS) in the COSMOS field. We find that the method predicts photo-zs that are 13% more precise down to magnitude iAB &lt; 23; the outlier rate is also 40% lower when compared to the baseline network. Furthermore, MTL reduces the photo-z bias for high-redshift galaxies, improving the redshift distributions for tomographic bins with z &gt; 1. Applying this technique to deeper samples is crucial for future surveys such as Euclid or LSST. For simulated data, training on a sample with iAB &lt; 23, the method reduces the photo-z scatter by 16% for all galaxies with iAB &lt; 25. We also studied the effects of extending the training sample with photometric galaxies using PAUS high-precision photo-zs, which reduces the photo-z scatter by 20% in the COSMOS field.</p

    Euclid preparation:XXIV. Calibration of the halo mass function in (?)CDM cosmologies

    Get PDF
    Euclid s photometric galaxy cluster survey has the potential to be a very competitive cosmological probe. The main cosmological probe with observations of clusters is their number count, within which the halo mass function (HMF) is a key theoretical quantity. We present a new calibration of the analytic HMF, at the level of accuracy and precision required for the uncertainty in this quantity to be subdominant with respect to other sources of uncertainty in recovering cosmological parameters from Euclid cluster counts. Our model is calibrated against a suite of N-body simulations using a Bayesian approach taking into account systematic errors arising from numerical effects in the simulation. First, we test the convergence of HMF predictions from different N-body codes, by using initial conditions generated with different orders of Lagrangian Perturbation theory, and adopting different simulation box sizes and mass resolution. Then, we quantify the effect of using different halo finder algorithms, and how the resulting differences propagate to the cosmological constraints. In order to trace the violation of universality in the HMF, we also analyse simulations based on initial conditions characterised by scale-free power spectra with different spectral indexes, assuming both Einsteinde Sitter and standard CDM expansion histories. Based on these results, we construct a fitting function for the HMF that we demonstrate to be sub-percent accurate in reproducing results from 9 different variants of the CDM model including massive neutrinos cosmologies. The calibration systematic uncertainty is largely sub-dominant with respect to the expected precision of future massobservation relations; with the only notable exception of the effect due to the halo finder, that could lead to biased cosmological inference.</p

    Euclid:Forecasts for kk-cut 3×23 \times 2 Point Statistics

    Get PDF
    Modelling uncertainties at small scales, i.e. high kk in the power spectrum P(k)P(k), due to baryonic feedback, nonlinear structure growth and the fact that galaxies are biased tracers poses a significant obstacle to fully leverage the constraining power of the {\it Euclid} wide-field survey. kk-cut cosmic shear has recently been proposed as a method to optimally remove sensitivity to these scales while preserving usable information. In this paper we generalise the kk-cut cosmic shear formalism to 3×23 \times 2 point statistics and estimate the loss of information for different kk-cuts in a 3×23 \times 2 point analysis of the {\it Euclid} data. Extending the Fisher matrix analysis of~\citet{blanchard2019euclid}, we assess the degradation in constraining power for different kk-cuts. We work in the idealised case and assume the galaxy bias is linear, the covariance is Gaussian, while neglecting uncertainties due to photo-z errors and baryonic feedback. We find that taking a kk-cut at 2.6 h Mpc−12.6 \ h \ {\rm Mpc} ^{-1} yields a dark energy Figure of Merit (FOM) of 1018. This is comparable to taking a weak lensing cut at ℓ=5000\ell = 5000 and a galaxy clustering and galaxy-galaxy lensing cut at ℓ=3000\ell = 3000 in a traditional 3×23 \times 2 point analysis. We also find that the fraction of the observed galaxies used in the photometric clustering part of the analysis is one of the main drivers of the FOM. Removing 50% (90%)50 \% \ (90 \%) of the clustering galaxies decreases the FOM by 19% (62%)19 \% \ (62 \%). Given that the FOM depends so heavily on the fraction of galaxies used in the clustering analysis, extensive efforts should be made to handle the real-world systematics present when extending the analysis beyond the luminous red galaxy (LRG) sample

    Euclid preparation: XX. The Complete Calibration of the Color-Redshift Relation survey:LBT observations and data release

    Get PDF
    The Complete Calibration of the Color-Redshift Relation survey (C3R2) is a spectroscopic programme designed to empirically calibrate the galaxy color-redshift relation to the Euclid depth (I_E=24.5), a key ingredient for the success of Stage IV dark energy projects based on weak lensing cosmology. A spectroscopic calibration sample as representative as possible of the galaxies in the Euclid weak lensing sample is being collected, selecting galaxies from a self-organizing map (SOM) representation of the galaxy color space. Here, we present the results of a near-infrared H- and K-bands spectroscopic campaign carried out using the LUCI instruments at the LBT. For a total of 251 galaxies, we present new highly-reliable redshifts in the 1.

    Testing Verlinde's emergent gravity in early-type galaxies

    Get PDF
    Verlinde derived gravity as an emergent force from the information flow, through two-dimensional surfaces and recently, by a priori postulating the entanglement of information in 3D space, he derived the effect of the gravitational potential from dark matter (DM) as the entropy displacement of dark energy by baryonic matter. In Emergent Gravity (EG) this apparent DM depends only on the baryonic mass distribution and the present-day value of the Hubble parameter. In this paper we test the EG proposition, formalized by Verlinde for a spherical and isolated mass distribution, using the central velocity dispersion, σ\sigma and the light distribution in a sample of 4260 massive and local early-type galaxies (ETGs) from the SPIDER sample. Our results remain unaltered if we consider the sample of 807 roundest field galaxies. We derive the predictions by EG for the stellar mass-to-light ratio (M/L) and the Initial Mass Function (IMF), and compare them with the same inferences derived from a) DM-based models, b) MOND and c) stellar population models. We demonstrate that, consistently with a classical Newtonian framework with a DM halo component, or alternative theories of gravity as MOND, the central dynamics can be fitted if the IMF is assumed non-universal. The results can be interpreted with a IMF lighter than a standard Chabrier at low-σ\sigma, and bottom-heavier IMFs at larger σ\sigma. We find lower, but still acceptable, stellar M/L in EG theory, if compared with the DM-based NFW model and with MOND. The results from EG are comparable to what is found if the DM haloes are adiabatically contracted and with expectations from spectral gravity-sensitive features. If the strain caused by the entropy displacement would be not maximal, as adopted in the current formulation, then the dynamics of ETGs could be reproduced with larger M/L. (abridged)Comment: 12 pages, 2 figures, submitted to MNRAS. The updated manuscript presents significantly altered conclusions, after discovering an internal bug in an older version of the Mathematica package, leading to incorrect numerical results when calculating the derivatives of Gamma function

    Euclid preparation:XII. Optimizing the photometric sample of the Euclid survey for galaxy clustering and galaxy-galaxy lensing analyses

    Get PDF
    Photometric redshifts (photo-zs) are one of the main ingredients in the analysis of cosmological probes. Their accuracy particularly affects the results of the analyses of galaxy clustering with photometrically selected galaxies (GCph) and weak lensing. In the next decade, space missions such as Euclid will collect precise and accurate photometric measurements for millions of galaxies. These data should be complemented with upcoming ground-based observations to derive precise and accurate photo-zs. In this article we explore how the tomographic redshift binning and depth of ground-based observations will affect the cosmological constraints expected from the Euclid mission. We focus on GCph and extend the study to include galaxy-galaxy lensing (GGL). We add a layer of complexity to the analysis by simulating several realistic photo-z distributions based on the Euclid Consortium Flagship simulation and using a machine learning photo-z algorithm. We then use the Fisher matrix formalism together with these galaxy samples to study the cosmological constraining power as a function of redshift binning, survey depth, and photo-z accuracy. We find that bins with an equal width in redshift provide a higher figure of merit (FoM) than equipopulated bins and that increasing the number of redshift bins from ten to 13 improves the FoM by 35% and 15% for GCph and its combination with GGL, respectively. For GCph, an increase in the survey depth provides a higher FoM. However, when we include faint galaxies beyond the limit of the spectroscopic training data, the resulting FoM decreases because of the spurious photo-zs. When combining GCph and GGL, the number density of the sample, which is set by the survey depth, is the main factor driving the variations in the FoM. Adding galaxies at faint magnitudes and high redshift increases the FoM, even when they are beyond the spectroscopic limit, since the number density increase compensates for the photo-z degradation in this case. We conclude that there is more information that can be extracted beyond the nominal ten tomographic redshift bins of Euclid and that we should be cautious when adding faint galaxies into our sample since they can degrade the cosmological constraints

    Euclid:Calibrating photometric redshifts with spectroscopic cross-correlations

    Get PDF
    Cosmological constraints from key probes of the Euclid imaging survey rely critically on the accurate determination of the true redshift distributions, n(z), of tomographic redshift bins. We determine whether the mean redshift, of ten Euclid tomographic redshift bins can be calibrated to the Euclid target uncertainties of 0.002 (1 +z) via cross-correlation, with spectroscopic samples akin to those from the Baryon Oscillation Spectroscopic Survey (BOSS), Dark Energy Spectroscopic Instrument (DESI), and Euclid s NISP spectroscopic survey. We construct mock Euclid and spectroscopic galaxy samples from the Flagship simulation and measure small-scale clustering redshifts up to redshift z 1.8 with an algorithm that performs well on current galaxy survey data. The clustering measurements are then fitted to two n(z) models: one is the true n(z) with a free mean; the other a Gaussian process modified to be restricted to non-negative values. We show that is measured in each tomographic redshift bin to an accuracy of order 0.01 or better. By measuring the clustering redshifts on subsets of the full Flagship area, we construct scaling relations that allow us to extrapolate the method performance to larger sky areas than are currently available in the mock. For the full expected Euclid, BOSS, and DESI overlap region of approximately 6000 deg2, the uncertainties attainable by clustering redshifts exceeds the Euclid requirement by at least a factor of three for both n(z) models considered, although systematic biases limit the accuracy. Clustering redshifts are an extremely effective method for redshift calibration for Euclid if the sources of systematic biases can be determined and removed, or calibrated out with sufficiently realistic simulations. We outline possible future work, in particular an extension to higher redshifts with quasar reference samples.</p

    Euclid preparation:XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography

    Get PDF
    The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on the accurate knowledge of the galaxy mean redshift ⟨z⟩\langle z \rangle. We investigate the possibility of measuring ⟨z⟩\langle z \rangle with an accuracy better than 0.002 (1+z)0.002\,(1+z), in ten tomographic bins spanning the redshift interval 0.299.8%0.299.8\%. The zPDF approach could also be successful if we debias the zPDF using a spectroscopic training sample. This approach requires deep imaging data, but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the debiasing method and confirm our finding by applying it to real-world weak-lensing data sets (COSMOS and KiDS+VIKING-450)
    • …
    corecore