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ABSTRACT

Photometric redshifts (photo-zs) are one of the main ingredients in the analysis of cosmological probes. Their accuracy particularly affects the
results of the analyses of galaxy clustering with photometrically-selected galaxies (GCph) and weak lensing. In the next decade, space missions like
Euclid will collect precise and accurate photometric measurements for millions of galaxies. These data should be complemented with upcoming
ground-based observations to derive precise and accurate photo-zs. In this article we explore how the tomographic redshift binning and depth of
ground-based observations will affect the cosmological constraints expected from the Euclid mission. We focus on GCph and extend the study to
include galaxy-galaxy lensing (GGL). We add a layer of complexity to the analysis by simulating several realistic photo-z distributions based on
the Euclid Consortium Flagship simulation and using a machine learning photo-z algorithm. We then use the Fisher matrix formalism presented
in Euclid Collaboration: Blanchard et al. (2020) together with these galaxy samples to study the cosmological constraining power as a function of
redshift binning, survey depth, and photo-z accuracy. We find that bins with equal width in redshift provide a higher Figure of Merit (FoM) than
equipopulated bins and that increasing the number of redshift bins from 10 to 13 improves the FoM by 35% and 15% for GCph and its combination
with GGL, respectively. For GCph, an increase of the survey depth provides a higher FoM. However, when we include faint galaxies beyond the
limit of the spectroscopic training data, the resulting FoM decreases because of the spurious photo-zs. When combining GCph and GGL, the number
density of the sample, which is set by the survey depth, is the main factor driving the variations in the FoM. Adding galaxies at faint magnitudes
and high redshift increases the FoM even when they are beyond the spectroscopic limit, since the number density increase compensates the photo-z
degradation in this case. We conclude that there is more information that can be extracted beyond the nominal 10 tomographic redshift bins of
Euclid and that we should be cautious when adding faint galaxies into our sample, since they can degrade the cosmological constraints.

1. Introduction

The goal of Stage-IV dark energy surveys (Albrecht et al. 2006),
such as Euclid1 (Laureijs et al. 2011) and the Vera C. Rubin

? e-mail: pocino@ice.csic.es
1 https://www.euclid-ec.org

Observatory Legacy Survey of Space and Time,2 (Rubin-LSST;
LSST Science Collaboration: Abell, P. A. et al. 2009) is to mea-
sure both the expansion rate of the Universe and the growth of
structures up to redshift z ∼ 2 and beyond. These surveys will al-
low us to constrain a large variety of cosmological models using
2 https://www.lsst.org
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cosmological probes like weak gravitational lensing (WL) and
galaxy clustering. Stage-IV surveys can be classified into spec-
troscopic and photometric surveys, depending on whether the
redshift of the observed objects is estimated with spectroscopy
or using photometric techniques. The latter can provide measure-
ments for many more objects than the former but at the expense
of a degraded precision on the redshift estimates, given that pho-
tometric surveys observe through multi-band filters instead of
observing the full spectral energy distribution that requires more
observational time. Because of this, galaxy clustering analyses
are usually performed with data coming from spectroscopic sur-
veys, while the data obtained from photometric surveys are gen-
erally used for WL analyses. However, given the current (and
future) precision of our measurements, the signal we can extract
from galaxy clustering analyses using photometric surveys is far
from being negligible (see e.g. Abbott et al. 2018; van Uitert
et al. 2018; Euclid Collaboration: Blanchard et al. 2020; Tu-
tusaus et al. 2020). Therefore, upcoming surveys can increase
their constraining power if they optimize their photometric sam-
ples to include galaxy clustering studies in addition to WL anal-
yses. The main aim of this work is to perform such an optimiza-
tion study for the Euclid photometric sample.

The Euclid satellite will observe over a billion galaxies
through an optical and three near-infrared broad bands. Given
the specifications of the satellite, the combination of Euclid
and ground-based surveys can enrich the science exploitation of
both. On one hand, the WL analysis of Euclid data requires an
accurate knowledge of the redshift distributions of the samples
used for the analysis. Euclid photometric data alone cannot reach
the necessary photometric redshift (photo-z) performance and
additional ground-based data are required. On the other hand,
Euclid will provide additional information to ground-based sur-
veys such as very precise shape measurements – thanks to the
high spatial resolution achieved being in space and avoiding
atmospheric distortions – and near-infrared spectroscopy. Eu-
clid’s data will help ground-based surveys improve their de-
blending of faint objects and improve their photo-z estimates,
which will definitely boost their scientific outcome. Surveys
where these synergies can be established include the Panoramic
Survey Telescope and Rapid Response System3 (PanSTARRS;
Chambers et al. 2016), the Canada-France Imaging Survey4

(CFIS; Ibata et al. 2017), the Hyper Suprime-Cam Subaru Strate-
gic Program5 (HSC-SSP; Aihara et al. 2017), the Javalambre-
Euclid Deep Imaging Survey (JEDIS), the Dark Energy Survey6

(DES; Dark Energy Survey Collaboration 2005), or Rubin-LSST
(Ivezić et al. 2019). The latter is a Stage IV experiment with a
strong complementarity with Euclid since it greatly overlaps in
area, covers two Euclid Deep Fields and reaches a faint photo-
metric depth that will lead to better photo-z estimation (Rhodes
et al. 2017; Capak et al. 2019). In this article we consider the
addition of ground-based optical photometry to Euclid in order
to assess the optimal photometric sample for galaxy clustering
and galaxy-galaxy lensing (GGL) analyses.

The optimization of the sample of photometrically-selected
galaxies for galaxy clustering analyses has been already stud-
ied in the literature. In Tanoglidis et al. (2019), the authors fo-
cus their analysis on galaxy clustering for the first three years
of DES data. Also for DES but including galaxy-galaxy lens-
ing, Porredon et al. (2021) studies lens galaxy sample selections

3 https://panstarrs.stsci.edu
4 http://www.cfht.hawaii.edu/Science/CFIS/
5 https://hsc.mtk.nao.ac.jp/ssp/
6 https://www.darkenergysurvey.org

based on magnitude cuts as a function of photo-z, balancing den-
sity and photo-z accuracy to optimise cosmological constrains in
the wCDM space. Another example is the recent analysis of Ei-
fler et al. (2020) on the Nancy Grace Roman Space Telescope
(Spergel et al. 2015) High Latitude Survey (HLS), where the au-
thors simulate and explore multi-cosmological probes strategies
on dark energy and modified gravity to study observational sys-
tematics, such as photo-z. These studies show the importance
of optimizing the galaxy sample for galaxy clustering analysis.
We aim to perform a similar optimization for the Euclid mis-
sion. Note that there have also been several studies optimizing
the spectroscopic sample for galaxy clustering analysis with Eu-
clid (Samushia et al. 2011; Wang et al. 2010).

We want to optimize the Euclid sample of galaxies detected
with photometric techniques by performing realistic forecasts of
its cosmological performance and observing the improvement
on the cosmological constraining power of different galaxy sam-
ples. When performing galaxy clustering analyses with a pho-
tometric sample there are several effects that need to be taken
into account such as galaxy bias, photo-z uncertainties or shot
noise, among other effects. Here, we try to follow the proce-
dures one would perform in a real data analysis when selecting
the samples for the analysis. For that purpose, we use the Euclid
Flagship simulation (Euclid Collaboration, in prep; Potter et al.
2017). For a given expected limit of the photometric depth, we
select the galaxies included within that magnitude limit and use
a machine learning photo-z method to study the optimal way to
split the catalogue into subsamples for the analysis. We generate
realistic redshift distributions, n(z), for the chosen subsamples
and estimate their galaxy bias, b(z). We study the constraining
power of these samples when we modify the number and width
of the tomographic bins, and when we reduce the sample size by
performing a series of cuts in magnitude.

The article is organized as follows. We present Euclid and
ground-based surveys in Sect. 2 and Sect. 3. In Sect. 4 we intro-
duce the Flagship simulation and describe how we create pho-
tometric samples with different selection criteria. We define the
set of galaxy samples that will be used throughout the article, and
explain how we estimate the photometric redshifts. In Sect. 5 we
detail the forecast formalism and we describe the cosmological
model in Sect. 6. In Sect. 7 we present the results of the optimiza-
tion when changing the number and type of tomographic bins,
and we study the dependency of the cosmological constraints on
photo-z quality and sample size. Finally, we present our conclu-
sions in Sect. 8.

2. The Euclid survey

Euclid is an European Space Agency (ESA) M-class space mis-
sion due for launch in 2022. In the wide survey, it will cover
over 15 000 deg2 of the extra-galactic sky with the main aim
of measuring the geometry of the Universe and the growth of
structures up to redshift z ∼ 2 and beyond. Euclid will have two
instruments on-board: a near-infrared spectro-photometer (Cos-
tille et al. 2018), and an imager at visible wavelengths (Crop-
per et al. 2018). The imager of Euclid, called VIS, will observe
galaxies through an optical broad band, mVIS, covering a wave-
length range between 540 and 900 nm, with a magnitude depth
of 24.5 at 10σ for extended sources. The spectro-photometric in-
strument, called NISP, has three near-infrared bands, Y JH, cov-
ering a wavelength range between 920 and 2000 nm (Racca et al.
2016, 2018). The nominal survey exposure is expected to reach
a magnitude depth of 24 at 5σ for point sources. If we convert
this depth to 10σ level detections for extended sources we obtain
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a magnitude depth of about 23, which is the value we consider
in Table 1. The deep survey will cover 40 deg2 divided in three
different fields: the Euclid Deep Field North and the Euclid Deep
Field Fornax of 10 deg2 each, and the Euclid Deep Field South of
20 deg2 (Euclid Collaboration, in prep.). In these fields the mag-
nitude depth will be two magnitudes deeper than in the wide sur-
vey. With its two instruments, Euclid will perform both a spec-
troscopic and a photometric galaxy survey that will allow us to
determine cosmological parameters using its three main cosmo-
logical probes: galaxy clustering with the spectroscopic sample
(GCs), galaxy clustering with the photometric sample (GCph),
and WL. We will study how the selection of the galaxy sample
that enters into the analysis can be optimised to provide the tight-
est cosmological constraints focusing on the GCph analysis and
its cross-correlation with WL – also called GGL.

3. Ground-based surveys

The single broad band VIS of Euclid cannot sample the spectral
energy distribution in the optical range. Euclid will require com-
plementary observations in the optical from ground-based sur-
veys to provide the photometry to estimate accurate photomet-
ric redshifts and achieve the scientific goals of Euclid. Several
ground-based surveys will be needed to cover all the observed
area of Euclid, as Euclid covers both celestial hemispheres and
those cannot be reached from a single observatory on Earth. The
ground-based complementary data will not cover uniformly the
Euclid footprint. It is very likely that there will be at least three
distinct areas in terms of photometric data available. The South-
ern hemisphere is expected to be covered with Rubin-LSST data,
while the Northern hemisphere will be covered with a combina-
tion of surveys such as CFIS, PanSTARRS, JEDIS and HSC-
SPP. In addition, some area North of the equator may also be
covered by Rubin-LSST at a shallower depth than in the South-
ern hemisphere. In this work we include simulated ground-based
photometry that try to encompass the range of possible ground-
based depths that the Euclid analysis will have from the deepest
Rubin-LSST data to the shallower data from other surveys.

Rubin-LSST is expected to start operations in 2022 and over
10 years it will observe over 20 000 deg2 in the Southern hemi-
sphere with 6 optical bands, ugrizy, covering a wavelength range
from 320 to 1050 nm. The idealized final magnitude depth for
coadded images for 5σ point sources are 26.1, 27.4, 27.5, 26.8,
26.1, 24.9, for ugrizy, respectively, based on the Rubin-LSST
design specifications (Ivezić et al. 2019). Among other scientific
themes, Rubin-LSST has been designed to study dark matter and
dark energy using WL, GCph, and supernovae as cosmological
probes. The Rubin-LSST survey will provide the best photome-
try for Euclid-detected galaxies at the time that Euclid data be-
come available.

Another suitable ground-based candidate to cover the opti-
cal and near-infrared range in the Southern sky is the DES pho-
tometric survey. DES completed observations in 2019 after a 6-
years program. It covered 5000 deg2 around the Southern Galac-
tic cap through 5 broad band filters, grizy, with wavelength rang-
ing from 400 to 1065 nm, and redshift up to 1.4 (Dark Energy
Survey Collaboration: Abbott et al. 2016). The median coadded
magnitude limit depths for 10σ and 2′′ diameter aperture are
24.3, 24.0, 23.3, 22.6, for griz, respectively. These depths corre-
spond to the published values of the first three years of observa-
tions (Sevilla-Noarbe et al. 2020).

4. Generating realistic photometric galaxy samples

The cosmological constraining power of Euclid will depend on
the external data available as it will dictate the photo-z perfor-
mance of the samples to be studied. In order to study the im-
pact of the available photometry, we create six samples selected
with different photometric depths. For each sample, we compute
the photo-z estimates using machine learning techniques taking
into account the expected spectroscopic redshift distribution of
the training sample. We use these photo-z estimates to split each
sample into tomographic bins for which we can compute their
photo-z distributions and galaxy bias from the simulation. These
n(z) and b(z) are then used to forecast the cosmological perfor-
mance. In this section we provide a detailed description of how
we obtain the realistic photo-z estimates of the Euclid galaxies
that are later used in the forecast. We first present the cosmo-
logical simulation used to extract the photometry and the galaxy
distributions. We then explain how we generate realisations of
the photometry for the simulated galaxies taking into account the
expected depth of the Euclid and ground-based data. We finally
present the method used to estimate the photo-z.

4.1. The Flagship simulation

We consider the Flagship galaxy mock catalogue of the Euclid
Consortium (Euclid Collaboration, in preparation) to create the
different samples. The catalogue uses the Flagship N-body dark
matter simulation (Potter et al. 2017). Dark matter halos are
identified using ROCKSTAR (Behroozi et al. 2013) and are re-
tained down to a mass of 2.4 × 1010 h−1 M�, which corresponds
to ten particles. Galaxies are assigned to dark matter halos using
Halo Abundance Matching (HAM) and Halo Occupation Dis-
tribution (HOD) techniques. The cosmological model assumed
in the simulation is a flat ΛCDM model with fiducial values
Ωm = 0.319, Ωb = 0.049, ΩΛ = 0.681, σ8 = 0.83, ns = 0.96,
h = 0.67. The N-body simulation ran in a 3.78 h−1 Gpc box with
particle mass mp = 2.398 × 109 h−1 M�. The galaxy mock gen-
erated has been calibrated using local observational constraints,
such as the luminosity function from Blanton et al. (2003) and
Blanton et al. (2005a) for the faintest galaxies, the galaxy clus-
tering measurements as a function of luminosity and colour from
Zehavi et al. (2011), and the colour-magnitude diagram as ob-
served in the New York University Value Added Galaxy Catalog
(Blanton et al. 2005b). The catalogue contains about 3.4 billion
galaxies over 5000 deg2 and extends up to redshift z = 2.3.

For this study we select an area of 402 deg2, which corre-
sponds to galaxies within the range of right ascension 15◦ < α <
75◦ and declination 62◦ < δ < 90◦. All the photometric galaxy
distributions obtained in this patch are extrapolated to the 15 000
deg2 of sky that Euclid is expected to observe. Note that the se-
lected area is large enough to minimize the impact of sample
variance, but small enough to allow for the production of several
galaxy samples in a reasonable amount of time. After the pho-
tometric uncertainty is added to the photometry of each galaxy,
we perform a magnitude cut in mVIS < 25 that leads to a number
density of about 41.5 galaxies per arcmin2.

4.2. Photometric depth

Each galaxy observation will lead to a measured value of its
magnitude and its associated error. The magnitude depth is usu-
ally given as the magnitude at which the median relative error
has a particular value. In galaxy surveys it is customary to ex-
press the depth at a signal-to-noise of 10 for extended objects,
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that is, when the value of the noise is one tenth of its signal. As
explained in detail below, we generate realisations of the photo-
metric errors for a given survey taking into account its magnitude
depth and scaling the values of the errors at other magnitudes as-
suming background limited observations, that is, that the back-
ground signal dominates the contribution to the error.

We simulate four different photometric survey depths. Ta-
ble 1 shows their magnitude limits. The first column corresponds
to a combination of Euclid and ground-based photometric depth
expected to be achieved in the Southern hemisphere. We la-
bel this case as optimistic and it is the deepest case we will
study. The magnitude limits for the optical bands are for ex-
tended sources at 10σ, similar to those expected from Rubin-
LSST (LSST Science Collaboration et al. 2009). The values for
Euclid correspond to a 10σ detection level for extended sources.
In addition to the magnitude limits expected in the South, we
also want to investigate how the cosmological constraints de-
grade as the depth is reduced. We investigate three other cases.
First, a case were the depth in optical bands are reduced by a
factor of two in signal-to-noise ratio. The second column shows
the magnitudes limits for this case where the optical bands are
reduced by 0.75 magnitude. This column represents a possible
case where the Rubin-LSST data have a reduced depth in areas
outside its main footprint. We also study a case were the limiting
fluxes of Euclid are brightened by 0.75 magnitudes, shown in the
third column. Lastly, we explore a case where the ground-based
data is degraded by a factor of five in signal-to-noise but the
Euclid space data remains at their nominal depth values. This
broadly represents the depth that can be achieved from other
ground-based data in the Northern hemisphere.

For each survey case, we generate a galaxy catalogue drawn
from the Flagship simulation. We assign observed magnitudes
and errors with the following procedure. First, we compute the
expected error for each galaxy, taking into account its magnitude
in the Flagship catalogue and the magnitude limit of the survey
as given in Table 1. We assume that the observations are sky
limited (the noise is dominated by the shot noise of the sky), and
therefore we scale the ratio of the signal to noise between two
galaxies i and j as the ratio of their fluxes( S

N

)
i
=

( S
N

)
j

fi
f j
, (1)

where fi is the observed flux of galaxy i detected at signal-to-
noise ratio (S/N)i. The magnitude (flux) limits in Table 1 give
us the fluxes corresponding to a signal-to-noise ratio of 10, f10σ,
and therefore we can compute the expected signal-to-noise at
which a galaxy of a given magnitude is detected as( S

N

)
i
= 10

fi
f10σ

. (2)

Using the definition of signal-to-noise, (S/N)i = fi/∆ fi, we can
compute the expected flux error for each galaxy as

∆ fi =
f10σ

10
. (3)

The fluxes in the Flagship catalogue correspond to the real fluxes
of each galaxy. Whenever we observe these galaxies in a given
survey, we detect a realization of the real flux. For our study, we
generate realisations of the observed fluxes f ∗i for each survey as

f ∗i = fi + N (µ = 0, σ = f10σ/10) , (4)

where N is a random number from a normal distribution. We
then assign errors to the resulting fluxes according to Eq. (3).
Finally, the new fluxes and their assigned errors are converted
into magnitudes and their respective magnitude errors.

4.3. Samples

We estimate the expected cosmological constraints using the
galaxy clustering analysis of tomographic bins defined with
photo-z (see Sect. 5). The magnitude limit of a given sample
will give us the galaxies that form the overall sample, while the
photo-z algorithm will split that sample into tomographic bins
and will provide an estimate of the redshift distributions within
these tomographic bins. We can better understand the uncertain-
ties in the method using simulations where we know the true red-
shift distributions. So far, we have defined four different samples
based on the available photometry representing the four cases
defined in Table 1. The photo-z performance depends on the pho-
tometric depth and the spectroscopic data available to train the
method. Now, we will generate study cases depending on the
spectroscopic data available to train the photo-z technique we
use. We will use three different spectroscopic samples with dif-
ferent completeness profiles as a function of magnitude. First,
we consider an idealised case where the spectroscopic training
sample is a random subsample of the whole sample and thus
it is fully representative (blue line in Fig. 1). We consider a
second case where the spectroscopic sample completeness as
a function of magnitude follows the expectations from spectro-
graphs on 8-m class telescopes (Newman et al. 2015). This case
is shown in black in Fig. 1. This is intended to mimic the spec-
troscopic incompleteness as a function of magnitude of surveys
like zCOSMOS (Lilly et al. 2007), VVDS (Le Fèvre et al. 2013)
and DEEP2 (Newman et al. 2013) at least in its shape, although
maybe optimistic in its normalisation. Finally, we consider a last
case where the spectroscopic completeness is similar to the cur-
rent available spectroscopic surveys, as those listed in Gschwend
et al. (2018). We compute how the completeness in spectroscopic
data as a function of redshift translates into completeness in mVIS

(orange line in Fig. 1). These cases are explained in more detail
later in this section. It is worth mentioning that we only consider
galaxies and not stars in the samples under study. With the high
spatial resolution of Euclid, the contamination in the sample due
to stars is expected to be minimal. We have also assumed that the
effects of Galactic extinction are corrected in the data reduction
pipelines and therefore ignore Galactic extinction. These factors
can be include in the future to add another layer of realism to the
analysis.

We combine the four cases of photometric limits with the
three cases of different spectroscopic data available to train the
photo-z techniques to generate six galaxy samples for our study.
With these six samples we try to encompass a wide range of sce-
narios to try to understand how the cosmological constraints vary
depending on the sample available. We detail these six cases in
the following subsections. Table 2 summarises all the cases we
consider. All our samples have galaxies down to a magnitude
limit of mVIS = 25. Note that for our shallower survey (column
four in Table 1), galaxies near this mVIS selection limit will have
larger errors. It is also important to mention that in all cases we
assume the magnitude limit in each band to be isotropic – ho-
mogeneous on the sky. This will definitely not be the case for
Euclid, since ground-based data will consist on a compilation of
different surveys pointing at different regions of the sky, with dif-
ferent depths and systematic uncertainties. For instance, Rubin-
LSST focuses on the Southern hemisphere, while Euclid will
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Table 1. Limiting coadded depth magnitudes for extended sources at 10σ used in each sample.

Ground based All Ground based
Band Optimistic degraded −0.75 degraded −0.75 degraded −1.75

u 25.55 24.8 24.8 23.8
g 26.75 26.0 26.0 25.0

Ground r 26.95 26.2 26.2 25.2
based i 26.25 25.5 25.5 24.5

z 25.45 24.7 24.7 23.7
y 24.15 23.4 23.4 22.4

Euclid

mVIS 24.6 24.6 23.85 24.6
Y 23 23 22.25 23
J 23 23 22.25 23
H 23 23 22.25 23

Table 2. Cases under study. The photometric limit value corresponds to
the column number of Table 1 whose magnitude limit depths are used
to define each photometric sample. The spectroscopic training sample
used to determine the photo-z can be a representative subsample, a sam-
ple with a completeness drop in mVIS or a sample with an inhomoge-
neous spectroscopic redshift distribution as shown in Fig. 1.

Sample name Photometric Spectroscopic
limit training

Case 1: Optimistic 1 Subsample
Case 2: Fiducial 1 Compl. drop
Case 3: Mid-depth 2 Compl. drop
Case 4: Mid-depth Euclid 3 Compl. drop
Case 5: Shallow depth 4 Compl. drop
Case 6: Inhomogeneous spec 4 Inho. spec-z

also observe the Northern one. A more detailed analysis taking
into account the depth anisotropy of the ground-based data is
left for future work. A possible approach would be to generate
several sets of ground-based photometry according to the spe-
cific limitations of each ground-based instrument and region of
the sky covered, in order to reproduce the expected anisotropy of
the photometry. Then we would mix the different sets of ground-
based photometry and add them to the Euclid photometry in or-
der to determine the photometric redshifts and redo the optimiza-
tion analysis as performed in this article.

4.3.1. Case 1: Optimistic

This case uses the deepest magnitude limit and a highly idealised
spectroscopic training sample. The sample has magnitudes and
errors generated as described in Sect. 4.2 with the Euclid and
ground-based photometric depth limits shown in the first column
of Table 1. The photo-z are estimated using a training set that
is a complete and representative subsample in both redshift and
magnitude of the whole sample.

4.3.2. Case 2: Fiducial

We take this case to be our fiducial sample. We use the deepest
photometry as in the optimistic case 1 but the photo-z estima-
tion now makes use of a training sample that has a completeness
drop at faint magnitudes that resembles the incompleteness of
spectroscopic surveys carried out with spectrographs in 8m-class
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Fig. 1. Fraction of simulated objects with successful spectroscopic red-
shift as a function of mVIS. The lines represent the completeness fraction
of the spectroscopic training samples. The blue line corresponds to the
fraction of objects for a random training subsample that is fully repre-
sentative of the sample under study. In black we show an expectation of
the spectroscopic completeness for future ground-based surveys such as
Rubin-LSST in mVIS (see Newman et al. 2015). In orange we present the
completeness of a training sample with an n(z) similar to the currently
available spectroscopic data (see text). Note that the number of objects
included in each training set is not represented by the normalisation of
the different curves in this figure (see Fig. 2 for the redshift distribu-
tions). Moreover, although our photometric samples go up to mVIS = 25,
we cut the spectroscopic training samples at mVIS < 24.5 because real-
istic redshifts have not been reliably determined beyond that magnitude
limit yet.

telescopes. We show the completeness drop in the spectroscopic
training sample in Fig. 1 (black line). While the completeness as
a function of magnitude intends to be realistic of current spectro-
scopic capabilities, we make the simplifying assumption that this
incompleteness does not depend on any galaxy property except
its magnitude and therefore we randomly subsample the whole
distribution only taking into account the probability of being se-
lected based on the galaxy magnitude.

4.3.3. Case 3: Ground-based mid-depth photometry

We define another sample trained with the same spectroscopic
training sample completeness as in the fiducial case but with
shallower ground-based magnitude limits in the photometry. The
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ground-based magnitude limit is a factor of two shallower in
signal-to-noise ratio than in cases 1–2. This corresponds to the
second column in Table 1. This case is intended to represent ar-
eas on the sky between the celestial equator and low Northern
declinations where Rubin-LSST data at shallower depth may be
available.

4.3.4. Case 4: Euclid mid-depth photometry

To explore the possibilities of available photometry, especially
the importance of deep near-infrared photometry, we define a
case in which both the Euclid and ground-based photometric
depth is reduced by 0.75 magnitudes (third column in Table 1).
The spectroscopic training sample completeness is the same as
in cases 2 and 3.

4.3.5. Case 5: Ground-based shallow depth photometry

The complementary ground-based photometry expected to be
available in the Northern hemisphere is shallower than the mag-
nitude limits used in our previous cases. We define a sample to
roughly represent and cover this option by considering a ground-
based flux limit 1.75 magnitudes brighter compared to our opti-
mistic case (fourth column in Table 1). To compute the photo-z
we use a spectroscopic training set with the same completeness
in mVIS as in cases 2, 3, and 4.

4.3.6. Case 6: Inhomogeneous spectroscopic sample

In this last sample, we want to study the case in which the spec-
troscopic training sample is very heterogeneous and composed
of the combination of many surveys targeting galaxies with dif-
ferent selection criteria and with different spectroscopic facili-
ties. We choose a spectroscopic training set that tries to model
the n(z) of current available spectroscopic data coming from sur-
veys as those listed in Gschwend et al. (2018). Given that some
of these surveys have different colour selection cuts and mag-
nitude limit depths, the combined redshift distribution is not ho-
mogeneous presenting peaks and troughs, which cause strong bi-
ases in the photo-z estimation due to over and under-represented
galaxies at different redshift ranges (see e.g. Zhou et al. 2020).
We want to remark that we only try to reproduce the n(z) of the
overall spectroscopic sample. We do not try to gather this spec-
troscopic sample applying the same selection criteria of the dif-
ferent surveys used. We consider that this is not necessary for our
purposes as we are only interested in the overall trend induced
by using an inhomogeneous spectroscopic training sample. We
create the spectroscopic training sample by randomly selecting
galaxies based on their redshift to reproduce the overall targeted
redshift distribution. Given that the Flagship simulation area we
are using (see Sect. 4.1) is smaller than the surveys sampling the
nearby Universe, our simulated spectroscopic training does not
exactly reproduced our overall redshift distribution at low red-
shifts. The resulting completeness as a function of the mVIS of
this spectroscopic redshift sample can be seen in Fig. 1 (orange
line). The modeled n(z) is shown in Fig. 2 (orange line). With
this case, which intends to represent the currently available data,
we can draw a lower bound on the photo-z accuracy that can be
expected for Euclid. In this case, we use the same photometric
magnitude limits as in case 5.

The realism of our training samples is limited in the sense
that we only try to reproduce the completeness in mVIS or the
shape of the n(z) distribution. We do not take into account any
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Fig. 2. True redshift distributions of the training samples used to run
DNF in all 6 cases. The training samples include magnitudes brighter
than mVIS = 24.5. The true redshift comes from the Flagship simulation.
The four training samples with almost identical true redshift distribu-
tions have the same completeness drop in mVIS and only differ in the
photometric quality.
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Fig. 3. Top: zmean photometric redshift distributions obtained with DNF
for the 6 photometric samples up to mVIS = 25. The zmean photo-z es-
timate returned by DNF is the value resulting from the mean of the
nearest neighbours redshifts. Lower: Photometric redshift distributions
obtained with DNF for the zmc statistic, which for each galaxy is a one-
point sampling of the redshift probability distribution estimated from
the nearest neighbour (see text for details).

dependence of the training samples on other characteristics such
as galaxy type or the presence of emission lines, which would
have an impact on the determination of the photo-z.

4.4. Photometric redshifts

The cosmological tomographic analysis of a photometric survey
divides the whole sample into redshift bins selected with a photo-
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Fig. 4. Scatter plot of both photometric redshifts given by DNF, zmean (top row) and zmc (bottom row), as a function of true redshift for all the
samples described in Sect. 4.3 up to mVIS < 24.5. The σ of photo-z for these sample at mVIS < 24.5 is from left to right: 0.063, 0.049, 0.046, 0.036,
0.032, 0.029.

Table 3. Photo-z metrics of each photometric sample and cut in mVIS (as explained in Sect. 7.2).

Normalised Median Absolute Deviation

mVIS Shallow depth inho. Shallow depth Mid depth Euclid Mid depth Fiducial Optimistic

25 0.090 0.066 0.061 0.046 0.040 0.036
24.5 0.063 0.049 0.046 0.036 0.032 0.029
24 0.049 0.039 0.038 0.031 0.028 0.026
23.5 0.041 0.033 0.034 0.027 0.025 0.024
23 0.036 0.029 0.030 0.024 0.023 0.022

Fraction of outliers (%)

25 25.8 16.1 14.4 9.0 6.9 5.1
24.5 12.9 7.5 6.3 3.3 2.2 1.5
24 5.5 3.6 3.0 1.6 1.0 0.8
23.5 2.8 1.9 1.7 0.8 0.6 0.5
23 1.6 1.0 0.9 0.4 0.3 0.3

z technique. In our study, we want to follow as close as possible
the methodological steps that one would carry out in real sur-
veys. For that purpose, we compute the photo-zs of all our study
cases described in Table 2. We use the Directional Neighborhood
Fitting (DNF; De Vicente et al. 2016) training-based algorithm
to estimate realistic photo-z estimates of our simulated galaxies.
The exact choice of the machine learning training set method is
not important for our analysis as most methods of this type per-
form similarly to the precision levels we are interested in (see
e.g. Euclid Collaboration: Desprez et al. 2020; Sánchez et al.
2014).

DNF estimates the photo-z of a galaxy based on its close-
ness in observable space to a set of training galaxies whose red-
shifts are known. The main feature of DNF is that the metric
that defines the distance or closeness between objects is given
by a directional neighbourhood metric, which is the product of
a Euclidean and an angular neighbourhood metrics. This metric
ensures that neighbouring objects are close in colour and magni-
tude space. The algorithm fits a linear adjustment, a hyperplane,
to the directional neighbourhood of a galaxy to get an estimation
of the photo-z. This photo-z estimate is called zmean, which is the

average of the redshifts from the neighbourhood. The residual
of the fit is considered as the estimation of the photo-z error. In
addition, DNF also produces another photometric redshift esti-
mate, zmc that is a Monte Carlo draw from the nearest neighbour
in the DNF metric for each object. Therefore, it can be consid-
ered as a one-point sampling of the photo-z probability density
distribution. As such, it is not a good individual photo-z estimate
of the object, but when all the estimates in a galaxy sample are
stacked it can recover the overall probability density distribution
of the sample (Rau et al. 2017). When working with tomographic
bins, we will classify the galaxies into different bins using their
zmean and we will obtain the photometric distribution, n(z), within
each bin by stacking their zmc. This is an approach used by DES
in analysing their First Year Data results (e.g., Hoyle et al. 2018,
Crocce et al. 2019, Camacho et al. 2019) providing redshift dis-
tributions that were validated with other independent assessment
methods. Therefore, we define the n(z) by stacking the zmc esti-
mator instead of the true redshift of the simulation to make the
photo-z distribution close to what would be obtained in a real
data analysis with the assurance that the method has been vali-
dated.
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We select a patch of sky of 3.35 deg2 to create the samples
to train DNF. These training samples have the magnitudes and
errors computed with the same magnitude limits as the sample
whose photo-z we want to compute (see Table 1). We generate
three types of spectroscopic training samples. For all of them we
limit the spectroscopic training sample to galaxies brighter than
mVIS = 24.5 as there are few objects whose redshift has been reli-
ably determined beyond that magnitude limit. The spectroscopic
training samples are described in Section 4.3.

The true redshift distributions of the spectroscopic training
set used to train DNF for each of the sample cases considered
here are shown in Fig. 2. In blue, we present the redshift distri-
bution of case 1 with the first spectroscopic training sample that
it is fully complete as a function of magnitude. We show in black
the resulting N(z) of case 2. Cases 3–5 (olive, red and orange
colours in Figs. 2 and 3) have the same training sample com-
pleteness as a function of magnitude. The drop in completeness
at faint magnitudes translates into a decrease of objects at high
redshift. Last, we present the resulting redshift distribution with
the third spectroscopic training set in orange. Gathering multiple
selection criteria from different spectroscopic surveys leads to an
inhomogeneous redshift distribution for the spectroscopic train-
ing sample. In Fig. 3, we show the overall photo-z distributions
of zmean (top panel) and zmc (bottom panel) values obtained for
the full sample for each of the six cases. We see how an inhomo-
geneous N(z) in the training sample leads to an inhomogeneous
distribution of the photo-z.

Fig. 4 shows the photo-z obtained with DNF as a function of
true redshift for the six samples up to mVIS < 24.5. This figure
gives us an indication of how the photo-z scatter decreases with
deeper photometry. Photometric samples go up to mVIS = 25.
However, we cut the spectroscopic training sample at mVIS = 24.5
to be more realistic. The lack of objects between 24.5 and 25.0
in the training sample forces the algorithm to extrapolate beyond
that magnitude, and thus noisier photometric redshifts are ob-
tained. In Fig. 4, we show galaxies only down to mVIS < 24.5 to
reduce the noise and make the figure clearer.

To quantify the photo-z precision for the different samples
we use the following typical metrics:

– The normalised median absolute deviation:

σ = 1.4826 ·median(|∆z −median(∆z)|) , (5)

where

∆z =
zspec − zphot

1 + zspec
. (6)

– We consider outliers those objects with |∆z| > 0.15.

In Table 3 we show the values obtained for these metrics for each
photometric sample.

5. Building forecasts for Euclid

So far, we have seen how the photometric depth and the spec-
troscopic training sample determine the overall redshift distri-
butions of the resulting samples. We have selected six cases to
cover a range of possible scenarios that we may encounter in the
analysis of Euclid data complemented with ground-based sur-
veys. Once the galaxy distributions for the photometric cases un-
der study have been obtained, we want to propagate the photo-
z accuracy in determining tomographic subsamples to the final

constraints on the cosmological parameters in order to under-
stand how to optimize the photometric sample for galaxy clus-
tering analyses.

We follow the forecasting prescription presented in Euclid
Collaboration: Blanchard et al. (2020, hereafter EC20). We
consider the same Fisher matrix formalism and make use of
the CosmoSIS7 code validated for Euclid specifications therein.
Our observable is the tomographically binned projected angu-
lar power spectrum, Ci j(`), where ` denotes the angular multi-
pole, and i, j stand for pairs of tomographic redshift bins. This
formalism is the same for WL, galaxy clustering (with the pho-
tometric sample), and GGL, with the only difference being the
kernels used in the projection from the power spectrum of mat-
ter perturbations to the spherical harmonic-space observable. We
focus on the GCph cosmological probe, as well as its combi-
nation with GGL. The projection to Ci j(`) is performed under
the Limber, flat-sky and spatially flat approximations (Kitching
et al. 2017; Kilbinger et al. 2017; Taylor et al. 2018). We also
ignore redshift-space distortions, magnification, and other rela-
tivistic effects (Deshpande et al. 2020). To minimise the impact
of neglecting relativistic effects, more relevant at large scales,
in our analysis we consider multipole scales from ` ≥ 10 to
` ≤ 750, which corresponds to the more conservative scenario in
EC20.

When considering GGL, its power spectrum contains contri-
butions from galaxy clustering and cosmic shear, but also from
intrinsic galaxy alignments (IA). We assume the latter is caused
by a change in galaxy ellipticity that is linear in the density field.
Note that such modelling is appropriate for large scales (Troxel
et al. 2018), like the ones considered in this analysis, but more
complex models should be used for the very small scales (see
e.g. Blazek et al. 2019; Fortuna et al. 2020). Under this lin-
ear assumption we can define the density-intrinsic and intrinsic-
intrinsic three-dimensional power spectra, PδI and PII, respec-
tively. They can be related to the density power spectrum Pδδ

with PδI = −A(z)Pδδ and PII = A(z)2Pδδ. We follow EC20 in
parameterising A as

A(z) =
AIACIAΩmFIA(z)

D(z)
, (7)

where CIA is a normalisation parameter that we set as CIA =
0.0134, D(z) is the growth factor, and AIA is a nuisance param-
eter fixing the amplitude of the IA contribution.

We model the redshift dependence of the IA contribution as

FIA = (1 + z)ηIA

[
〈L〉 (z)
L∗(z)

]βIA

, (8)

with 〈L〉 (z)/L∗(z) being the redshift-dependent ratio between the
average source luminosity and the characteristic scale of the lu-
minosity function (Hirata et al. 2007; Bridle & King 2007). For a
detailed explanation on IA modeling see Samuroff et al. (2019).
We use the same ratio of luminosities for every galaxy sam-
ple. However, this ratio should in principle depend on the spe-
cific galaxy population. Since we select galaxies according to a
mVIS cut and not according to a particular galaxy type, we expect
that the luminosity ratio does not change significantly between
galaxy samples, and therefore use the same ratio for simplicity.
We set the fiducial values for the intrinsic alignments nuisance
parameters to

{AIA, ηIA, βIA} = {1.72,−0.41, 2.17} , (9)

7 https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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Fig. 5. Left panel: Galaxy bias as a function of redshift. Dots correspond to the measured values in the Flagship simulation for different magnitude
cuts and the solid lines are a fit following Eq. (11). We plot with squares the bias values obtained for z = 2 to indicate that at that redshift there
are few objects and thus the values are slightly less reliable. At mVIS < 23 there were not enough objects at z = 2 to compute the bias in Flagship.
Right panel: Ratio between the HSC bias, bHSC, from N20 and the Flagship bias for each magnitude-limited sample. To assess the 1σ uncertainty
of bHSC along the redshift range, we generate a set of Gaussian random numbers for the free parameter α, b1, and b0 of bHSC with their values as
mean and their errors as standard deviation. Then we evaluate bHSC in the redshift range for all the set of free parameters previously generated. We
pick the maximum and minimum bHSC at each redshift. This corresponds to the shaded regions.

in agreement with the recent fit to the IA contribution in the
Horizon-AGN simulation (Chisari et al. 2015), although the am-
plitudeAIA might be smaller in practice (Fortuna et al. 2020).

When considering GCph and GGL one of the primary sources
of uncertainty is the relation between the galaxy distribution
and the underlying total matter distribution, i.e. the galaxy bias
(Kaiser 1987). We consider a linear galaxy bias relating the
galaxy density fluctuation to the matter density fluctuation with
a simple linear relation

δg(x, z) = b(z)δm(x, z) , (10)

where we neglect any possible scale dependence. Note that a
linear bias approximation is sufficiently accurate for large scales
(Abbott et al. 2018). However, when adding very small scales
into the analysis, a more detailed modeling of the galaxy bias is
required (see e.g., Sánchez et al. 2016). One of the approaches to
this modeling is through perturbation theory, which introduces a
nonlinear and nonlocal galaxy bias (Desjacques et al. 2018).

We consider a constant galaxy bias in each tomographic bin.
We get their fiducial values by fitting the directly measured bias
in Flagship to the function

b(z) =
AzB

1 + z
+ C , (11)

where A, B and C are nuisance parameters. We select five sub-
samples with mVIS limiting magnitudes: 25, 24.5, 24, 23.5, and
23 from the Flagship galaxy sample. We compute the bias val-
ues as a function of redshift for each of these magnitude-limited
subsamples using directly the true redshift of Flagship at red-
shifts 0.5, 1, 1.5 and 2. As an approximation, we use the same
galaxy bias for each of the six photometric samples and change
the fiducial according to the magnitude limit cut. The obtained
bias and fitted functions are shown in the left panel of Fig. 5.
To fit the bias-redshift relation we choose to use all galaxy bias
values computed with the Flagship simulation, although values

at z = 2 were less reliable. The value of the bias at z = 1.5 falls
outside the bias-redshift fit for the mVIS < 23 sample. However,
we recomputed the bias fit neglecting the value at z = 2 and
including the value at z = 1.5, but no significant changes were
appreciated, therefore we keep the bias computed using the fits
shown in Fig. 5.

To validate the bias obtained with Flagship, we compare our
bias values to the ones obtained from the Hyper Suprime-Cam
Subaru Strategic Program (HSC-SSP) data release 1 (DR1) by
Nicola et al. (2020, N20 hereafter). The HSC survey has com-
parable survey depth and uses similar ground-based bands to the
ones considered in this work. N20 fit galaxy bias on magnitude-
limited galaxy samples down to i < 24.5. We compare their val-
ues to ours in the right panel of Fig. 5. We extrapolate their bias
down to i < 25 for our faintest magnitude bin. Strictly speaking,
we are comparing i-band magnitude-selected samples from N20
to our mVIS-band magnitude-selected samples. We have checked
in Flagship that the bias values for both i-band and mVIS-band
selected samples cut at the same magnitude limit do not change
by more than 10% and therefore our comparison is meaningful.
N20 assume that bias can be split into two separated terms of
redshift and limiting magnitude, and define it as

bHSC(z,mlim) = b̄(mlim)Dα(z) , (12)

where α is a variable that takes into account the inverse rela-
tion between the growth factor and galaxy bias. By fitting α and
b̄(mlim) in a multi-step weighted process they find

α = −1.30 ± 0.19 ,

b̄(mlim) = b1(mlim − 24) + b0 , (13)

where b1 = −0.0624 ± 0.0070 and b0 = 0.8346 ± 0.161. For
a detailed explanation see Sect. 4.6 in N20. We compute D(z)
for our sample and use our mVIS magnitude cuts as mlim along
with their fitted parameters to get a bias to compare. The ratio
between the HSC bias, bHSC, and ours, b(z), is shown in the right
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panel of Fig. 5. Note that N20 compute their bias up to redshift
1.25 and that we have extrapolated their behaviour to higher red-
shifts for the comparison at z > 1.25. The values of the bias in
Flagship stay within 1σ of the HSC values, bHSC (shaded area in
the right panel of Fig. 5), confirming that the bias values we use
are consistent with the HSC observations.

We consider the same redshift distributions for both GCph
and GGL. In practice, this is an over-simplification, since these
two probes will probably apply different selection criteria when
determining their samples. GGL for instance will give some im-
portance to the shape measurements of the galaxies. But for the
present Fisher matrix analysis we limit ourselves to use the same
sample for both probes.

6. Cosmological model

We optimize the photometric sample of Euclid considering the
baseline cosmological model presented in EC20: a spatially flat
Universe filled with cold dark matter and dark energy. We ap-
proximate the dark energy equation of state parameter with the
CPL (Chevallier & Polarski 2001; Linder 2005) parameterisa-
tion

w(z) = w0 + wa
z

1 + z
. (14)

Therefore, the cosmological model is fully specified by the
dark energy parameters, w0 and wa, the total matter and baryon
density today, Ωm and Ωb, the dimensionless Hubble constant,
h, the spectral index, ns, and the RMS of matter fluctuations on
spheres of 8 h−1Mpc radius,σ8. We assume a dynamically evolv-
ing, minimally-coupled scalar field, with sound speed equal to
the speed of light and vanishing anisotropic stress as dark en-
ergy. Therefore, we neglect any dark energy perturbations in our
analysis. We also allow the equation of state of dark energy to
cross w(z) = −1 using the Hu & Sawicki (2007) prescription.

The fiducial values of the cosmological parameters are given
by

{Ωm,Ωb,w0,wa, h, ns, σ8} =

= {0.32, 0.05,−1, 0, 0.67, 0.96, 0.816} . (15)

Moreover, we fix the sum of neutrino masses to
∑

mν =
0.06 eV. Note that the linear growth factor depends on both red-
shift and scale when neutrinos are massive, but we follow EC20
in neglecting this effect, given the small fiducial value consid-
ered. Therefore, we compute the growth factor accounting for
massive neutrinos, but neglect any scale dependence. Note that
the fiducial values used in this analysis are compatible with
the fiducial cosmology of the Flagship simulation presented in
Sect. 4.1 except for σ8. This can be explained by the fact that
the Flagship simulation does not account for massive neutrinos
and therefore considers a slightly larger value for σ8. However,
since we are only extracting the galaxy bias and the galaxy dis-
tributions from Flagship, and we are computing Fisher forecasts,
this difference in the fiducial σ8 value does not have any impact
on our results.

We quantify the performance of photometric galaxy samples
in constraining cosmological parameters through the metric fig-
ure of merit (FoM), as defined in Albrecht et al. (2006) but with
the parameterisation defined in EC20. Our FoM is proportional
to the inverse of the area of the error ellipse in the parameter
plane of w0 and wa defined by the marginalised Fisher subma-
trix, F̃w0wa ,

FoMw0wa =

√
det

(
F̃w0wa

)
. (16)

We will use the FoM defined above throughout this article. The
higher the FoM value, the higher the cosmological constraining
power.

7. Results

In this section we carry out a series of tests to optimize the
sample selection for GCph analyses. We want to determine the
best number and type of tomographic bins to constrain cosmo-
logical parameters. We explore the influence of the accuracy in
the photo-z estimation and sample size in providing cosmolog-
ical constraints. We split the data in tomographic redshift bins
in order to have more control in the variations of sample size
and photo-z accuracy to better understand their impact in con-
straining cosmological parameters. We use the FoM defined in
Eq. (16) to quantify the constraining power on the cosmolog-
ical parameters. In addition, we also compute the FoM when
combining GCph with GGL, assuming the same photo-z sam-
ple, which implies the same photo-z binning and number den-
sity. When computing the cosmological constraining power for
GCph + GGL, we marginalize over the galaxy bias of each to-
mographic bin and intrinsic alignment parameters, whereas for
GCph alone the galaxy bias parameters are fixed to their fiducial
values. The main reason for this choice is that, under the linear
galaxy bias approximation, there is a large degeneracy between
the galaxy bias and σ8. In this case, the Gaussianity assumption
of the Fisher matrix approach breaks down and its constraints on
the cosmological parameters are not reliable. Therefore, we fix
the galaxy bias to break this degeneracy when considering GCph
alone. Note that when we combine GCph with GGL, the addi-
tional information brought by the latter is enough to break such
degeneracy and constrain σ8 and the galaxy bias at the same
time.

7.1. Optimizing the type and number of tomographic bins

We bin galaxies into different numbers of redshift bins to study
the impact of the number of redshift bins on the cosmolog-
ical parameter inference. When we define redshifts bins, we
choose galaxies within the redshift range [0, 2] since the max-
imum lightcone outputs generated in Flagship are at z = 2.3
and we prefer to avoid working at the limit of the simulation.
We check the effect of using bins with the same redshift width
and bins with the same number of objects (equipopulated). We
also see the difference when using only GCph or both GCph and
GGL probes. This analysis is performed using our fiducial sam-
ple (case 2) up to mVIS < 24.5. We compute the FoM for all the
cases mentioned and show the results in Fig. 6. The FoM are
normalised to ten bins since this is the default number used to
compute the forecasts in EC20.

As seen in Fig. 6, the general tendency of the FoM is to in-
crease with the number of bins. EC20 used ten tomographic bins
as their fiducial value. For bins with equal width in redshift, the
FoM increase when moving from ten to thirteen bins is 35.4%
and 15.4%, for GCph only and for GCph + GGL, respectively.
The FoM improvement we get from going to even more bins
does not compensate the increase in computational time needed
for the analysis. This is especially true when using both probes,
where we notice that the curve flattens while in GCph the FoM
continues to increase since the bias is fixed and thus the amount
of information that can be extracted is larger than expected in
practise. Moreover, our photo-z treatment may start to be too
simplistic to realistically deal with too many photometric red-
shift bins. The FoM saturates with the increasing number of bins
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casts in EC20 and denoted by a vertical-dashed line. A vertical-dotted
line shows the 13 bins used as our fiducial choice.

because it is not possible to extract more information on radial
clustering when the width of the bins is smaller than the photo-z
precision. At this limit, the uncertainty at which bin a particu-
lar galaxy belongs is greatly increased. For GCph + GGL the
curves flatten at lower number of bins since systematic effects
in the marginalisation of galaxy bias and intrinsic alignment free
parameters also affect the cosmological information that can be
extracted. Therefore, we choose thirteen to be our fiducial num-
ber of bins as a conservative choice.

In addition, we choose bins with equal width in redshift as
the optimal way of partitioning the sample since we observe
that, overall, for GCph the FoM is larger in this case than in the
equipopulated one. For thirteen bins with equal width the FoM is
713 while it is 547 for equipopulated bins 8, which is an increase
of 30%. For the GCph + GGL combined analysis, the FoM does
not appreciably change between the use of bins with equal width
and equipopulated ones. At thirteen bins, which is the fiducial
choice, the FoM difference of using bins with equal width or
equipopulated ones is negligible.

We will use these bin choices to analyze the dependency of
cosmological constraints on the photo-z quality and size of the
sample. In Fig. 7 we show the redshift distributions of the thir-
teen bins with equal width for our fiducial case 2 sample.

7.2. FoM dependency on photometric redshift quality and
number density

Another aspect we want to study is the effect of the trade-off be-
tween photo-z accuracy and number density on the constraining
power of cosmological parameters. For that purpose, we take the
six photometric samples defined in Sect. 4.3 and apply five cuts
(25, 24.5, 24, 23.5, 23) in mVIS to modify the sample size (leading
to a number density of about 41, 29, 18, 12 and 9 galaxies per
arcmin2 respectively). Besides reducing the number density of
the photometric samples, the cut in mVIS also affects the photo-z
distribution and accuracy of the overall sample. A bright mag-

8 Recall that galaxy bias is fixed when considering GCph alone, which
provides these large absolute values for the FoMs.
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Fig. 7. Redshift distributions (zmc) of the thirteen bins with equal width
for the fiducial sample (case 2). The top x-axis correspond to the values
of the redshift limits of the thirteen bins with equal width in redshift.
The shaded regions indicate these limits.

nitude cut, that eliminates the fainter galaxies, mostly removes
galaxies with higher and thus less reliable redshifts. We compute
the FoM for all the cases mentioned before and normalise them
to the FoM of our fiducial (case 2) sample at mVIS < 24.5, for
both GCph only and GCph + GGL. To help visualise the results,
we present the resulting FoM in a grid format in Fig. 8 and the
values themselves in Table 4. The configuration of tomographic
bins used to perform the analysis is the optimum one found in
the previous section, which is thirteen bins with equal width.

Let us first discuss the case of GCph alone. As seen in Fig. 8,
in general, the FoM for GCph increases with deeper photometric
data, which improves the photo-z performance (increasing along
the x-axis in the figure). The FoM also increases with number
density, determined by the magnitude limit imposed (increasing
along the y-axis). We notice a larger increase in the FoM with
sample size in those samples where the photo-z quality is better
(e.g., the optimistic, fiducial and mid depth ground-based pho-
tometry cases). In these cases, increasing the sample size from a
mVIS cut from 23.5 to 24 and from 24 to 24.5 leads to an increase
of the FoM of about 20%. Clearly, having a fainter magnitude
cut results in larger samples that yield higher FoM values. This
trend is in agreement with the results presented in Tanoglidis
et al. (2019).

The trend of increasing FoM as we take fainter magnitude
limit cuts and increase the number density continues as long as
the photo-z performance is not degraded. Once we push to faint
magnitudes where there are no objects to train the photomet-
ric redshift algorithms, their performance degrades and the pho-
tometric redshift bins start to be wider. There are many object
that do not belong to the bins and spurious cross-correlations
between different bins appear. As a result, the strength of the
cosmological signal is diminished and the FoM decreases. This
effect can be seen in Fig. 8 for the GCph case (left panel), where
we can appreciate a reduction in the FoM when we move from
a magnitude-limited sample cut at mVIS < 24.5 (second row from
the top) to a magnitude-limited sample cut at mVIS < 25.0 (top
row). With this change, we are increasing the sample, but with
galaxies that cannot be located in redshift as their photo-z can-
not be calibrated. As a result, the clustering strength is diluted
and some spurious cross-correlation signal appears resulting in
a decreased FoM compared to a shallower sample with better
photometric redshifts.
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Fig. 8. FoM for the samples defined in Sect. 4.3 with different photo-z accuracy and sample size. The size has been reduced by performing a series
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Table 4. Values of the FoM for samples defined in Sect. 4.3 with different photo-z accuracy and sample size (same cases as in Fig. 8). The results
are normalised to the FoM of the fiducial sample with mVIS < 24.5. For reference, the unnormalised value of our fiducial sample is 713 for GCph
and 411 for GCph + GGL. Note that galaxy bias and intrinsic alignments nuisance parameters are free in the latter, which provides a lower FoM
than in GCph alone.

GCph

mVIS Shallow depth inho. Shallow depth Mid depth Euclid Mid depth Fiducial Optimistic

25 0.57 0.82 0.84 0.93 0.96 0.98
24.5 0.67 0.90 0.91 0.98 1.00 1.02
24 0.59 0.74 0.77 0.81 0.82 0.83
23.5 0.46 0.59 0.59 0.61 0.62 0.64
23 0.39 0.48 0.50 0.52 0.51 0.51

GCph and GGL

25 0.85 1.24 1.29 1.37 1.24 1.30
24.5 0.75 0.98 1.01 1.01 1.00 0.98
24 0.46 0.53 0.55 0.54 0.52 0.54
23.5 0.27 0.30 0.30 0.29 0.28 0.30
23 0.17 0.17 0.18 0.20 0.17 0.18

To illustrate this effect, in Fig. 9 we show the redshift distri-
bution of three tomographic bins for three samples with galax-
ies down to mVIS < 24.5, < 25, and with galaxies only between
24.5 and 25. Galaxies with mVIS between 24.5 and 25 are mostly
outside their tomographic bin increasing the width of the distri-
bution and diluting the signal. We conclude that the GCph probe
is sensitive to the actual location of their tracer galaxies inside
their tomographic bins. Both the photometric redshift perfor-
mance and the number density are important contributing fac-
tors when performing cosmological inference with GCph. When
pushing to faint magnitudes, there is no improvement including
galaxies that cannot be located in redshift.

Let us now discuss the case where we add GGL to GCph
(right panel in Fig. 8). We observe that increasing the sample
size (moving along the y-axis) has a more significant impact on
the improvements of the FoM than the photo-z quality (changes
along the x-axis). The greatest improvement, of about 50% for
the best photo-z quality samples, takes place going from mVIS

< 24 to 24.5. The second largest improvement is of about 25 –

30% when adding objects from mVIS < 24.5 to 25. In the GGL
case, source galaxies outside the tomographic bin of the lens
galaxy contribute to the signal. The lensing kernel is quite ex-
tended in redshift and galaxies beyond the lens contribute to
the signal with only a mild dependence on their precise red-
shift, making the photometric redshfit performance less impor-
tant compared to the GCph only case. On the other hand, the sta-
tistical nature of detecting the lensing signal makes the number
density (and therefore the magnitude limit cut) a more important
factor in determining the GGL cosmological inference power.

In the FoM grid, we find a counter intuitive behaviour for
some samples when combining GCph and GGL (Fig. 8 right
panel). If we compare the mid depth and mid depth Euclid sam-
ples to the fiducial and optimistic samples at the same number
density (along the x-axis), we find that the former pair gives bet-
ter FoM constraints despite having larger photo-z scatter. This is
counter-intuitive as fewer galaxies are properly located in red-
shift and still the FoM cosmological constraints are slightly bet-
ter. As we mentioned before, whenever the photo-z performance
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degrades, more galaxies supposedly being in our tomographic
bin belong to other bins. This effect can increase the effective
number of sources for our lenses and thus boost the GGL sig-
nal. However, this is at the expense of reducing the cosmologi-
cal constraining power of the GCph probe. The interplay between
these two effects is difficult to gauge. The GGL increase appears
slightly more prominent when pushing to fainter magnitude lim-
its that produce a sizeable increase in number density.

The representativeness of the training sample also deter-
mines the photo-z performance and thus the cosmological con-
straining power. For GCph, if we check the difference in FoM be-
tween our fiducial sample, trained with a spectroscopic sample
that has a completeness drop at faint mVIS, and the same photo-
metric sample trained with a fully representative training sample
(optimistic sample) we see a gain of about 1–2% in the FoM.
Note that the spectroscopic incompleteness in this case is small
and only affecting faint magnitudes, so the effect on the FoM is
also small. This difference greatly increases when we compare
the FoM performance of shallower samples and higher incom-
pleteness in the spectroscopic training sample. If we compare
the shallow depth sample that was trained with a sample that has
a completeness drop in faint mVIS magnitude to the shallow depth
inhomogeneous sample that was trained with a sample that is in-
complete in the spectroscopic n(z), the difference between FoMs
can be up to 25% for GCph and 39% for both probes combined.

Finally, we look at the difference due to the ground-based
photometric depth. The difference between our fiducial and shal-
low depth cases may represent the change in depth to be achieved
in the Southern and Northern hemispheres. For these cases the
difference in cosmological constraint power is about 10% at mVIS

< 24.5 for GCph. This percentage reduces to 2% if we also con-
sider GGL.

7.3. Impact on the cosmological parameters constraints

We further investigate the forecasts of the constraints on the cos-
mological parameters by looking at the parameter uncertainties,
σi = ((F−1)ii)

1
2 , given by the square root of the diagonal ele-

ments of the inverse of the Fisher matrix. The uncertainties are
computed for all the photometric samples defined in Sect. 4.3

and for the different sample sizes. For visual clarity, we present
the results in grid form in Figs. 10 and 11.

In Fig. 10 we show the uncertainties for the GCph probe. We
can appreciate that, in general, the uncertainties have a similar
behaviour to the FoM, where the sample down to mVIS < 24.5
gives the higher FoM. However, there are parameters, such as
Ωb, wa, and h, that do not degrade as much their performance
when going to the deeper mVIS < 25 sample.

In Fig. 11 we show the uncertainties of the cosmological pa-
rameters when we combine the GCph and GGL cosmological
probes. Again, we see similar trends compared to the FoM case,
but with minor changes in the behaviour of how the uncertainties
in some of the parameters vary. The addition of galaxies, increas-
ing the survey depth, and the improvement of the photo-z perfor-
mance produce lower uncertainties in the Ωb and h parameters.
The reduction of the uncertainty obtained when considering the
deepest mVIS < 25 case compared to the mVIS < 24.5 is minimal,
though.

In addition to the values of the FoM and the uncertainties
in the parameters, it is also informative to study the distribution
of those uncertainties and the error contours in the determina-
tion of pairs of parameters. In Fig. 12 we present the confidence
contour plots for our fiducial sample at mVIS < 24.5 and 23.5,
to check how the number density affects the constraining power,
and compare them to our shallow sample at mVIS < 24.5, to see
the impact of having a sample with shallower ground-based pho-
tometry. The contours for the GCph case are shown in the upper
panel and the GCph and GGL case in the lower panel. For both
probes we see that the fiducial sample gives the best constraints
and the largest improvement is gained when the sample size in-
creases. The increase in constraining power with sample size is
more prominent in the GCph and GGL combined case in general,
and for the parameters that characterise dark energy, w0 and wa
in particular.

7.4. Redshift distribution of the photometric redshift bins

To better understand the behaviour of the FoM in Sect. 7.2 and
the constraints in Sect. 7.3, we take a closer look at the n(z) of
some of the samples used to perform the study. In the top panel
of Fig. 13 we compare our fiducial photometric sample for mVIS

cuts at < 25, < 24.5, and < 23.5 to see the effects in the n(z)
when changing the magnitude limit and therefore the sample
size. A shallower cut in magnitude removes objects at higher
redshift. In the bottom panel of the figure we compare the n(z)
for the fiducial, mid depth, and shallow depth samples at mVIS

< 25 to see how the behaviour of the n(z) changes with the depth
of the ground-based photometry and therefore with the photo-z
performance. Overall, the shallower the photometry, the larger
the width of the n(z) distributions, especially at higher redshift.
This effect spuriously dilutes the correlation signal inside bins
and increases the cross-correlation signal between bins, bringing
down the GCph constraining power. On the contrary, for the GGL
case the widening of the redshift distributions is less important
given the width of the lensing kernel. In addition, the effect of
an increase in the number density dominates the performance of
the FoM that in general increases with depth.

In Table A.1 we present quantitatively the number of objects
per bin and the width of the n(z) for the fiducial and shallow
photometric samples, and for all the mVIS magnitude cuts.
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Fig. 10. Uncertainties of the cosmological parameters for all the cases considered in Sect. 7.2 for GCph.

8. Summary and conclusions

Our primary goal is to study the cosmological constraints
that can be derived from galaxy clustering studies of
photometrically-selected samples using the combination of Eu-
clid and ground-based surveys. For that purpose we use the fig-
ure of merit, FoM, defined in Eq. (16) as our performance met-
ric. We want to explore the impact of the ground-based photom-
etry depth as well as the photometric redshift performance on
the FoM constraints. To explore the photometric redshift per-
formance, we vary both the survey depth and the spectroscopic
sample available to train the photometric redshift algorithms. We
use the Flagship simulation to create realizations of the expected
observed magnitudes and their errors for the survey depths un-
der study. To add a layer of realism to the study, we have com-
puted the photo-z using the machine learning code DNF in or-
der to obtain a realistic photo-z estimation for each of the pho-
tometric samples under study. We have also tried to mimic the
training of the photo-z method using spectroscopic samples with
different completeness levels. Given the scaled degradation of
the photometric quality among the samples, we obtain a gradi-
ent of photo-z quality. We choose as our fiducial sample the one
corresponding to the photometric depth expected to be available

in the Southern hemisphere with a survey like Rubin-LSST. We
perform our FoM analysis using the same Fisher forecast for-
malism as in EC20.

First, we study the optimisation of the FoM with respect to
the number and type of tomographic bins. We normalise our re-
sults to the case of ten bins with equal width since this is the
specifications used in EC20. For this analysis we use the fidu-
cial photometric sample defined in Sect. 4.3. Figure 6 shows the
variations in the normalised FoM as a function of the number
and type of bins. We find the best compromise for an optimal
configuration to be:

– Number of bins: A number slightly larger than ten is pre-
ferred. We adopt a default value of thirteen bins for our study.
For bins with equal width, the FoM increases when moving
from ten to thirteen bins by 35.4% and 15.4% for GCph only
and for GCph + GGL, respectively. We find that a larger num-
ber of bins still provides an increase in the FoM for the GCph
only case. However, the photometric redshift scatter starts to
be comparable to the bin width for such a large number of
bins and our assumptions on how we train and compute the
photo-z may start to be too simplistic.
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Fig. 11. Uncertainties of the cosmological parameters for all the cases considered in Sect. 7.2 for combined GCph and GGL.

– Type of bins: equal width. For the GCph case the FoM in-
creases by 30% for thirteen bins with equal width compared
to equipopulated bins. When combining with GGL the dif-
ference in the FoM as a function of bin type is almost negli-
gible.

These results are in nice agreement with Kitching et al. (2019)
where they find similar conclusions of the optimum type of bins
when optimizing the binning of photometric galaxy samples for
cosmic shear analysis. The need of a larger number of bins, es-
pecially with good photometric redshift accuracy and the inclu-
sion of intrinsic alignment parameters, to extract all the neces-
sary information for cosmic shear is also found in Bridle & King
(2007). In this latter study, they also conclude that the model and
freedom of the intrinsic alignment parameters greatly impact the
FoM of dark energy.

We further study the dependence of the FoM on the quality of
the photo-z and the size of the sample. We study possible scenar-
ios of complementary ground-based data for Euclid that could
be available in the Southern and Northern hemispheres and in
the region in between. We take several magnitude limit cuts and
generate realisations of the survey using the Flagship simulation.
We also explore different possibilities of spectroscopy data avail-

able to train the photometric redshift techniques. We end up with
a variety of samples with different number densities and photo-z
performance properties that try to encompass the possible sam-
ples that will be available for Euclid analyses. We compute the
dark energy FoM for all these samples to study its variation. Our
results are summarised in Fig. 8 and Table 4. For the GCph case,
we find a FoM of 713 for our fiducial sample with mVIS < 24.5
(remember that galaxy bias is fixed for the GCph case, provid-
ing larger absolute values for the FoM than in the combination
of GCph + GGL). The FoM improves with photo-z quality and
sample size. The trend with sample size or magnitude depth re-
verses when adding galaxies in a magnitude range (between 24.5
and 25 in our case) where photometric redshifts cannot be cali-
brated and are therefore of poor quality. There is a faster increase
of the FoM with sample size in those samples where the photo-
z performance is better. For example, in the optimistic, fiducial
and mid depth cases increasing the sample size from mVIS 23.5
to 24 and from 24 to 24.5 leads to an increase in the FoM of
about 20%. When combining GCph and GGL the FoM for the
fiducial sample at mVIS < 24.5 is 411. The FoM depends more
strongly on the sample size (or survey depth) than on the photo-
z performance. The greatest FoM increase, of about 50%, takes
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Fig. 12. Fisher matrix contours for our fiducial sample down to mVIS < 24.5 (blue) and 23.5 (yellow), and the sample with ground-based photometry
degraded by 1.75 magnitudes (red). Top panel: For GCph. Bottom panel: For GCph and GGL.

Article number, page 16 of 21



Euclid Collaboration: A. Pocino et al.: Optimizing the photometric sample of the Euclid survey for GCph and GGL analyses

0

2

4

6

8

N
or

m
al

iz
ed

n
(z

)

Fiducial mVIS < 25

Fiducial mVIS < 24.5

Fiducial mVIS < 25

Fiducial mVIS < 23.5

0.0 0.5 1.0 1.5 2.0

Redshift

0

2

4

6

8

N
or

m
a
li

ze
d

n
(z

)

Fiducial mVIS < 25

Mid depth mVIS < 25

0.0 0.5 1.0 1.5 2.0

Redshift

Fiducial mVIS < 25

Shallow depth mVIS < 25

0.0 0.15 0.31 0.46 0.62 0.77 0.92 1.08 1.23 1.38 1.54 1.69 1.85 2.0 0.0 0.15 0.31 0.46 0.62 0.77 0.92 1.08 1.23 1.38 1.54 1.69 1.85 2.0

Fig. 13. Top panels: Redshift distribution (zmc) of each tomographic bin for the fiducial sample at mVIS < 25 compared to the fiducial at mVIS < 24.5
(left) and 23.5 (right). Bottom panels: Redshift distribution (zmc) of each redshift bin for the fiducial sample compared to the mid depth (left) and
shallow depth samples at mVIS < 25 (right).

place when adding galaxies from mVIS < 24 to 24.5. The FoM
has a weak dependence on the photo-z performance. Generally,
it improves with better photo-z accuracy.

The photometric redshift performance depends on the signal-
to-noise of the photometry available and on the spectroscopic
sample used in the photometric redshift algorithm. In our study,
we use a machine learning technique, DNF. The representative-
ness of the training sample has a significant influence on the
photo-z quality. The impact on the FoM is larger when the pho-
tometry is shallower. For the optimistic photometry, the improve-
ment in the FoM is minimal, 1–2%, when we train the photo-
metric redshifts with a representative subsample or with a sub-
sample with a completeness drop at faint mVIS. This minimum
variation is because the spectroscopic sample incompleteness in
the second case only affects the very faintest galaxies. In the
cases where the spectroscopy incompleteness is representative
of a larger fraction of the galaxy sample the FoM variation is
larger. For example, for our shallowest photometric sample, the
relative variation in FoM when trained with an incomplete n(z)
and with just a completeness drop only at the faintest mVIS, can
be of around 30%.

We also investigate the uncertainties in the constrains on
our cosmological parameter set across the photo-z quality and
sample density space. Cosmological parameters present similar
trends to those of the FoM. But there are small differences be-
tween the different parameters. For GCph, in general the small-
est uncertainty is achieved when we get the highest FoM, which
is the optimistic sample at mVIS < 24.5. However, Ωb, wa and

h get the smallest uncertainties for the same optimistic sample
but for mVIS < 25. The balance between the degradation of the
photo-z and the increase in number density affects these param-
eters slightly differently. For GCph combined with GGL, the un-
certainty in the cosmological parameters presents a similar be-
haviour to the FoM trends. The lowest uncertainty in the param-
eters is achieved when the number density is largest, at mVIS < 25.
The trend with photo-z performance does not influence the level
of uncertainty. In general the parameters are better constrained
when the accuracy on the photo-z determination is higher. How-
ever, for some parameters this trend is different in the deepest
sample.

To conclude, there is significant gain in the FoM when us-
ing a larger number of redshift bins than the nominal ten bins
choice of Euclid, especially for GCph. We study the effect that
the accuracy of the photo-zs and the survey depth have on the
FoM. When using the GCph probe, the FoM increases with sur-
vey depth and with the reduction in photo-z uncertainties. We
study the influence of the training sample in the photo-z per-
formance and its implications on the FoM. We find than adding
faint galaxies whose redshifts cannot be properly determined be-
cause there are no galaxies of those magnitudes in the training
sample decreases the FoM. For the combination of the GCph and
GGL probes, there is even more gain on the cosmological con-
straining power when using larger samples than for GCph alone.
The photo-z quality has slightly less impact on the FoM than for
GCph alone. In general for the combination of probes, the num-
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ber density has a stronger influence on the FoM than the photo-z
accuracy.

Appendix A: Additional table of n(z) of photometric
redshift bins

In Sect. 7.4 we show the n(z) for the fiducial, mid depth, and
shallow samples at mVIS < 25. In this appendix we present a de-
tailed table containing the number of galaxies and the dispersion
of n(z) at each bin for the fiducial and shallow samples for all
magnitude cuts.
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