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ABSTRACT

Cosmological constraints from key probes of the Euclid imaging survey rely critically on the accurate determination of the true redshift distribu-
tions, n(z), of tomographic redshift bins. We determine whether the mean redshift, 〈z〉, of ten Euclid tomographic redshift bins can be calibrated
to the Euclid target uncertainties of σ(〈z〉) < 0.002 (1 + z) via cross-correlation, with spectroscopic samples akin to those from the Baryon Os-
cillation Spectroscopic Survey (BOSS), Dark Energy Spectroscopic Instrument (DESI), and Euclid’s NISP spectroscopic survey. We construct
mock Euclid and spectroscopic galaxy samples from the Flagship simulation and measure small-scale clustering redshifts up to redshift z < 1.8
with an algorithm that performs well on current galaxy survey data. The clustering measurements are then fitted to two n(z) models: one is the
true n(z) with a free mean; the other a Gaussian process modified to be restricted to non-negative values. We show that 〈z〉 is measured in each
tomographic redshift bin to an accuracy of order 0.01 or better. By measuring the clustering redshifts on subsets of the full Flagship area, we
construct scaling relations that allow us to extrapolate the method performance to larger sky areas than are currently available in the mock. For
the full expected Euclid, BOSS, and DESI overlap region of approximately 6000 deg2, the uncertainties attainable by clustering redshifts exceeds
the Euclid requirement by at least a factor of three for both n(z) models considered, although systematic biases limit the accuracy. Clustering
redshifts are an extremely effective method for redshift calibration for Euclid if the sources of systematic biases can be determined and removed,
or calibrated out with sufficiently realistic simulations. We outline possible future work, in particular an extension to higher redshifts with quasar
reference samples.

Key words. methods: data analysis – techniques: photometric – large-scale structure of Universe

1. Introduction

The European Space Agency’s Euclid space mission1

(Laureijs et al. 2011) will map out the positions of billions
of galaxies in the Universe. The imaging survey is designed
to measure the flux of galaxies in broadband photometric
filters over visual and infrared wavelengths, and spectroscopic
redshifts will be determined for a subsample of these galaxies
? This paper is published on behalf of the Euclid Consortium.

1 https://www.euclid-ec.org/

using slitless spectroscopy of emission line galaxies (ELGs).
Cosmological parameters and models will be constrained via
clustering and weak-lensing measurements, made on galaxy
samples split into photometric redshift (photo-z) bins. Critical
to the accuracy and precision of cosmological parameter
constraints is the determination of the true redshift distribu-
tions of these tomographic bins (see e.g., Huterer et al. 2006;
van den Busch et al. 2020).

A variety of techniques have been developed for this pur-
pose, including the aggregation, or ‘stacking’, of individual
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galaxy photometric redshift probability distribution func-
tions (PDFs; Tanaka et al. 2018; Hadzhiyska et al. 2020;
Euclid Collaboration 2021a); ‘direct calibration’ of the photo-
metric sample n(z) through the re-weighting of spectroscopic
colour-redshift spaces (Lima et al. 2008; Hildebrandt et al.
2017; Wright et al. 2020); and, the focus of this paper, cross-
correlations with spectroscopic samples, or ‘clustering redshifts’
(Newman 2008).

Since the seminal work of Newman (2008), cross-correlation
redshift calibration has seen a fair amount of development
(Schmidt et al. 2013; Ménard et al. 2013; McQuinn & White
2013; Sánchez et al. 2014; Scottez et al. 2016; Morrison et al.
2017; Scottez et al. 2018; Alarcon et al. 2020) but has only
recently made its way into state-of-the-art large-scale struc-
ture analyses (Hoyle et al. 2018; Gatti et al. 2018, 2022;
Hildebrandt et al. 2020; Myles et al. 2021; Cawthon et al. 2022).
Clustering redshifts use small angular scales where the signal-to-
noise of galaxy clustering is highest, and thus the achievable pre-
cision scales directly with the area of photometric–spectroscopic
overlap (see Cawthon et al. 2018). Next-generation photomet-
ric surveys such as Euclid and the Rubin Observatory’s Legacy
Survey of Space and Time (LSST; LSST Science Collaboration
2009) will be able to employ thousands of square degrees of
such overlap, in collaboration with the new generation of spec-
troscopic surveys, such as the Dark Energy Spectroscopic Instru-
ment (DESI; DESI Collaboration 2016), allowing for the most
powerful application of clustering redshifts to date.

Clustering redshifts are estimated through the angular cross-
correlations of galaxy samples. A tracer sample with secure red-
shift estimates (from spectroscopy or narrow-band photometry)
is cross-correlated with a target sample (which typically has
only broadband photometry), for which we wish to accurately
and precisely determine the redshift distribution, n(z). Under-
lying the method is the assertion that the on-sky positions of
galaxies in the two samples will only be correlated where they
inhabit similar ranges in redshift, that is, where their n(z) over-
lap. Thus, the amplitude of the cross-correlation at a given red-
shift contains information about the amplitude of the (known)
tracer, n(z), and the unknown target, n(z), but is degenerate with
the galaxy biases of both the photometric and spectroscopic
galaxy samples. For the spectroscopic sample, the bias can be
estimated by measuring the auto-correlation function. However,
the photometric sample bias is more difficult to constrain and is
the primary source of systematic errors for this mode of study
(van den Busch et al. 2020).

Clustering redshift calibration is complementary to the more
standard methods of photo-z calibration frequently employed
in the literature. Such approaches rely upon real or simulated
source photometry, either for characterising colour-redshift rela-
tions or for the use of photo-z estimation algorithms. Photomet-
ric uncertainties and biases then propagate directly into the n(z)
determination. The potential for biased n(z) determination from
these techniques can be significant due to degeneracies in the
colour-redshift distribution and to the incompleteness of spec-
troscopic samples in colour-redshift space (Hartley et al. 2020;
Wright et al. 2020). Clustering redshifts suffer none of these
limitations, as they rely instead upon the accuracy and suf-
ficient coverage of point-estimated redshifts. Being suscepti-
ble to independent sources of bias, each method is well suited
to cross-check the others; Alarcon et al. (2020) combined the
photometry- and clustering-based approaches in a hierarchi-
cal Bayesian framework, leveraging all available information to
recover mean redshifts with uncertainties of ∼3 × 10−3, even in
scenarios of poor or biased spectroscopic completeness.

For Euclid to achieve one of its primary science goals,
specifically a figure of merit (FoM) on dark energy of >400
(Laureijs et al. 2011), uncertainties on the mean redshift,σ (〈z〉) ,
for each tomographic redshift bin must be less than 0.002(1 +
z) (68% confidence limits; Laureijs et al. 2011). In this paper
we assess the potential for photometric-spectroscopic cross-
correlations to form a major component of the redshift cal-
ibration in Euclid. We aim to use approximately 402 deg2

of the Euclid Flagship simulation (Potter et al. 2017), with
realistic photo-z point estimates based upon LSST-like pho-
tometry, to forecast the expected uncertainties of cluster-
ing redshift calibration as the Euclid data volume grows.
We define realistic spectroscopic samples in the simula-
tion, based upon DESI and Baryon Oscillation Spectroscopic
Survey (BOSS) selection criteria (DESI Collaboration 2016;
Dawson et al. 2013), and make use of the clustering redshift
method (Schmidt et al. 2013; Ménard et al. 2013) as imple-
mented in the yet_another_wizz (YAW) software package
(van den Busch et al. 2020). We explore the dependence of
σ (〈z〉) upon the area of spectroscopic overlap and extrapolate
from 402 deg2 to the full projected overlap region for Euclid,
BOSS, and DESI. We also explore various methods of mitiga-
tion for systematic biases associated with the unknown redshift
evolution of the photometric galaxy bias, including the use of
spectroscopic auto-correlations and internal consistency checks
available only to simulations.

This paper is organised as follows. In Sect. 2 we describe
the Flagship simulated data, the realistic photo-z employed in
our analysis, and our definitions of spectroscopic sub-samples.
Section 3 details our cross-correlation methodology, galaxy bias
correction, and the extrapolation of uncertainties to the full
Euclid, BOSS, and DESI overlap. In Sect. 4 we present the
results of clustering redshift calibration for these simulations and
in Sect. 5 discuss the implications for Euclid clustering redshifts
and avenues to pursue for future research.

2. Data: Simulated photometric and spectroscopic
samples

Below we explain our process for constructing simulated Euclid
photometric ‘target’ samples and spectroscopic ‘tracer’ samples
used to study clustering redshifts for Euclid.

2.1. Summary of photometric and spectroscopic samples

In this study, we cross-correlate simulated photometric target
galaxies with Euclid-like mock photo-z and mock spectroscopic
tracer samples from the BOSS-like LOWZ and CMASS; the
DESI-like Bright Galaxy Survey (BGS); luminous red galax-
ies (LRGs) and ELGs; and the Euclid-like NISP-S galaxies. We
defined our BOSS- and DESI-like galaxy samples on simulated,
noiseless photometry, wherein randomly distributed redshift
‘failures’ are modelled by sparse sampling to appropriate num-
ber densities. However, systematic failures arising from noisy
photometry, and potentially correlating spatially, or with vari-
able survey depth, were not implemented – the impact of these
should be explored in future work.

In Fig. 1 we display the true redshift distributions for the
ten photometric bins, defined using one of the photo-z sam-
ples defined in Sect. 2.2, and compare them with our mock
spectroscopic sample redshift distributions. The lack of spec-
troscopic samples above redshift 1.8 sets a hard upper-limit for
our inferred target n(z)’s. Future studies will benefit greatly from
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Fig. 1. Photometric redshift distribution in comparison to reference spectroscopic samples. Top: redshift ranges for each of the ten tomographic
bins. Middle: true redshift distribution of each tomographic bin. Bottom: redshift distribution of the reference spectroscopic samples: BOSS-like
LOWZ and CMASS; DESI-like BGS, LRG, and ELG; and Euclid NISP-S. The reference samples only support redshifts up to 1.8, and dictate the
maximum redshift of bin 10.

understanding the role that quasar galaxy samples from BOSS,
eBOSS (Dawson et al. 2016), or DESI (Yèche et al. 2020) can
play in better constraining the Euclid photometric sample at
higher redshifts. We also note the relatively small tracer–target
redshift overlap for galaxies in the range 0.4–0.6, where only
mock BOSS galaxies are available for cross-correlation; this has
the potential to adversely affect the n(z) constraints for this red-
shift range.

The footprints for the BOSS2, DESI3, and Euclid surveys
(Amiaux et al. 2012; Euclid Collaboration 2022a) are shown on
the sky in Fig. 2. Light grey areas indicate regions of the Euclid
survey with no overlap, darker grey indicates regions over-
lapping with at least one of BOSS or DESI, and the darkest
grey indicates regions overlapping with both BOSS and DESI.
For comparison we also indicate the footprint of the Flagship
galaxy simulation used in this study, which is a subset of the
full Flagship octant. Euclid is projected to overlap with DESI
over 9015 deg2, and with both BOSS and DESI over 6005 deg2.
Unfortunately most of this overlap takes place across the North-
ern Hemisphere, where photometry from LSST will be limited
to the southern-most regions, and therefore the accuracy of the
photo-z is likely be worse than that for the ones used in this
study. Since these photo-z catalogues were not produced with-
out LSST-like photometry, we could not isolate this study to
purely Euclid photometry. We have instead chosen to assume
that either the ugrizy bands of LSST will be supplemented in the
Northern Hemisphere by other photometric surveys of equiva-
2 http://www.sdss3.org/dr9/algorithms/boss_tiling.php#
footprint
3 https://www.legacysurvey.org

lent depth (as assumed by Euclid Collaboration 2021b) or that
the spectroscopic overlaps of BOSS and DESI are supplied by an
equivalent Southern Hemisphere survey such as those that will
be observed with the 4-metre Multi-Object Spectroscopic Tele-
scope4 (4MOST). This means the quality of the Euclid photo-z
will depends on the angular footprint of the supplementary pho-
tometry used from other surveys such as LSST and needs to be
factored into future studies as this may also result in n(z) that
are angular dependent – which, if this is the case, will drastically
complicate cosmological inference and analysis.

2.2. Euclid photometric sample

The Flagship simulation (Potter et al. 2017) is a large N-body
simulation computed with over two trillion dark matter parti-
cles in a box of length 3.78 h−1Gpc using the PKDGRAV3 N-
body code. The simulation is constructed assuming a flat Λ
cold dark matter model with cosmological parameters Ωm =
0.319, Ωb = 0.049, ΩΛ = 0.681, σ8 = 0.83, ns = 0.96 and
h = 0.67. Dark matter haloes were identified using ROCKSTAR
(Behroozi et al. 2013), and galaxies assigned using halo abun-
dance matching and halo occupation distribution techniques.
Simulated Euclid photo-z were constructed for galaxies in the
Flagship simulation over the RA range 15◦–75◦, and Dec range
62◦–90◦ (Euclid Collaboration 2021b). We briefly describe the
construction of this catalogue below but refer the reader to
Euclid Collaboration (2021b) for a complete description.

4 https://www.4most.eu/cms/
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Fig. 2. Survey footprints for BOSS, DESI, and Euclid shown on the sky, with darker greys indicating regions of tracer–target sample overlap.
The footprint perimeter for BOSS is indicated in red, for DESI in blue, and for Euclid in black. Light grey indicates regions of the Euclid survey
alone, mid-grey indicates regions with Euclid overlapping with either BOSS or DESI, and dark grey indicates regions with Euclid overlapping
both BOSS and DESI. For comparison, the on-sky subregion of the Flagship octant for which we have simulated photo-z is shown in orange. The
Euclid survey region is defined to avoid both the Ecliptic (dashed pink line) and Galactic (dash-dotted blue line) planes.

To generate realistic photo-z catalogues, realistic fluxes were
created by adding Gaussian noise to Flagship galaxy fluxes. The
Gaussian noise is defined with a standard deviation of f5σ/5 (the
flux error associated with each galaxy) where f5σ is the limit-
ing flux depth at a signal-to-noise ratio (S/N) of 5. The limiting
magnitudes at 5σ depth considered to compute flux observations
were 26.3, 27.5, 27.7, 27, 26.2, and 24.9 for the ugrizy bands of
Rubin LSST, and 24.6, 23, 23, and 23 for the IE and YE, JE, HE

bands of Euclid at 10σ depth assuming both surveys are at end-
of-survey depth.

The noisy IE magnitudes were cut to less than 24.5
(Laureijs et al. 2011) to simulate the Euclid IE galaxy sam-
ple. Realistic estimates of the photometric redshift of simu-
lated galaxies were made using the directional neighbourhood
fitting (DNF; De Vicente et al. 2016) training-based algorithm.
The DNF photo-z are estimated according to the proximity in
colour-magnitude space of target and training galaxies, where
redshifts are known for the training set. The DNF algorithm pro-
duces two photo-z estimates; ‘zmean’ takes the mean of neigh-
bouring galaxies in colour and magnitude space, and ‘zmc’ draws
a random redshift from the neighbouring galaxies. A 3.35 deg2

patch of Flagship was used to create training samples for the
DNF. The first training sample was defined to be fully represen-
tative in redshift and magnitude space, and produced the photo-
z catalogues zmean and zmc. A second training sample featured
a completeness drop in IE magnitude (emulating the expected
spectroscopic completeness fraction versus photometric depth
function for surveys such as Rubin; see Newman et al. 2015),
and produced the photo-z catalogues zmean Rubin and zmc Rubin. We
repeated our analysis on each of these four photo-z catalogues.

We produced ten tomographic redshift bins for each photo-
z catalogue. These were constructed by selecting galaxies with
photo-z between 0.2 and 1.6, and then dividing them into ten
bins with approximately equal numbers of galaxies. The defi-
nition for the tomographic bins used in this study differ in two
important ways to the definitions currently planned for Euclid; in

the real survey the maximum photo-z will extend up to z = 2.6
rather than z = 1.6 and secondly 13 rather than 10 tomographic
bins will be used (Euclid Collaboration 2020b). The justification
for these difference is motivated by two factors, (1) a limit to the
galaxies in the Flagship mocks of z < 2.2 and (2) a sharp cut off
in simulated spectroscopic tracers to z < 1.8. Including galaxies
with photo-z of greater than z > 1.6 will introduce a substan-
tial set of galaxies with true redshifts beyond z > 1.8 where
clustering redshift measurement cannot be made. Since this lim-
itation is purely based on our setup we wish to limit any effect
it may pose on the results and implications for Euclid. Quasars
(e.g., as observed by DESI; DESI Collaboration 2016) will even-
tually provide reference samples for calibration at these high red-
shifts. We note that the clustering redshifts method will need to
be carefully optimised for quasar samples, where bias modelling
and angular scale utilisation are likely to pose challenges for the
much sparser quasar population.

We note that Euclid’s ground-based photometry complement
in the Northern Hemisphere will be somewhat shallower and less
homogeneous than the LSST. Nevertheless, the photometry will
meet the stringent Euclid requirements and hence yield high-
quality photometric redshifts, so that our conclusions remain
valid.

2.3. Reference spectroscopic samples

We detail below the various spectroscopic tracer samples that
we define in the Flagship simulation, each designed to mimic a
current or future galaxy sample observed by Euclid, BOSS, or
DESI.

2.3.1. Euclid NISP-S samples

The Euclid near-infrared spectrometer (Schirmer 2022b) is
designed to measure spectroscopic redshifts for over 50 mil-
lion galaxies (referred to as the NISP-S sample). The redshift
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determination is to be made with slitless spectroscopy depen-
dent on the detection of emission lines, in particular the Hα
line, in the near-infrared. We defined mock NISP-S samples in
Flagship by selecting galaxies with Hα fluxes greater than 3 ×
10−16 erg cm−2 s−1 (Laureijs et al. 2011), and cutting to a redshift
range between 0.9 and 1.8. Comparisons of the mock NISP-S
redshift distribution to the optimistic and pessimistic predictions
made by Euclid Collaboration (2020a), we found consistency
above redshifts of 1.35, but an overproduction of galaxies at
lower redshifts. To correct for this we carry out sparse sampling
for mock NISP-S galaxies with z < 1.35 to approximately match
the optimistic expectation from Euclid Collaboration (2020a).

2.3.2. Baryon Oscillation Spectroscopic Survey LOWZ and
CMASS samples

We defined BOSS-like samples according to the colour-
magnitude selections specified by Dawson et al. (2013). BOSS
produced two spectroscopic LRG samples, LOWZ and CMASS,
targeting adjacent redshift intervals z ∈ [0.15, 0.43] and z ∈
(0.43, 0.7], respectively, and with true densities of about 30 deg−2

and 120 deg−2, respectively. We replicated the BOSS colour-
magnitude selections as follows, first defining

c‖ = 0.7 (g − r) + 1.2 (r − i − 0.18), (1)
c⊥ = (r − i) − (g − r)/4 − 0.18, (2)
d⊥ = (r − i) − (g − r)/8, (3)

where gri denote apparent magnitudes (at our simulated LSST
depth). We then defined mock LOWZ samples with the follow-
ing criteria:

|c⊥| < 0.2, (4)
r < 13.6 + c‖/0.3, (5)
16 < r < 19.5, (6)

and mock CMASS samples with

17.5 < i < 19.9, (7)
d⊥ > 0.55, (8)
i < 19.86 + 1.6 (d⊥ − 0.8). (9)

These cuts provided LOWZ- and CMASS-like objects in the
Flagship simulation at rates of 67 deg−2 and 139 deg−2, respec-
tively. We sparse sample our selections to the desired densities,
with sparse sampling fractions of 0.44 and 0.86.

2.3.3. Dark Energy Spectroscopic Instrument BGS, LRG,
and ELG samples

We based our DESI-like sample selections on those detailed
in Sect. 3 of DESI Collaboration (2016). DESI will measure
the spectra of galaxies at relatively low redshifts with the BGS
(designed to use spectra obtained during brighter sky condi-
tions), and will also target two deeper surveys of LRGs and
ELGs.

We define our mock BGS sample with the following criteria,

r < 19.5, (10)
z < 0.4, (11)

where z is the true object redshift. We define the mock LRG
sample with

z < 20.46, (12)
r < 23, (13)
0.6 < z < 1.0, (14)
color_kind = red sequence (0), (15)

where color_kind is a flag labelling red sequence (0), green
valley (1) and blue cloud (2) galaxies. Lastly, we defined the
mock ELG sample of galaxies with [O ii] emission line strengths
greater than 8 × 10−17 erg s−1 cm−2, and with the following cuts,

r < 23.4, (16)
g − r < 0.7, (17)
r − z > 0.3, (18)
0.6 < z < 1.6, (19)
color_kind , red sequence (0), (20)

which act to isolate ELGs in colour-colour space, minimising
contamination of the sample by lower-redshift objects or by
stars. We also applied a hard cut to the expected redshift range,
and required that the color_kind not specify a red sequence
object, though these have comparatively small impacts upon the
selection.

These cuts provided BGS-, LRG-, and ELG-like objects in
the Flagship simulation at rates of 1174 deg−2, 392 deg−2, and
2021 deg−2, respectively. We achieved the expected number den-
sities (of 700 deg−2 for BGS, 285 deg−2 for LRG, and 1220 deg−2

for ELG) by sparse sampling with sparse sampling fractions of
0.6, 0.73, and 0.6, respectively.

We omitted DESI LRGs with z < 0.6, which have selec-
tion criteria similar to BOSS. Therefore, the dearth of reference
galaxies in the range 0.4 < z < 0.6 will be much less pronounced
for real data, which makes our analysis conservative.

3. Method

In this section we briefly outline the clustering redshift method
used in this study, the subsequent method for modelling the red-
shift distributions, and lastly the area rescaling approach used to
predict the uncertainty on the mean redshift for the full Euclid
survey.

3.1. Clustering redshifts

The angular correlation function ω12(θ, z) for two samples on the
sky (denoted by 1 and 2), where sample 1 is at a fixed redshift z,
is given by the Limber (1953) relation,

ω12(θ, z) = b1(z)
∫ ∞

0
dz′ n2(z′) b2(z′) ξ

[
R(θ, z, z′), z

]
, (21)

where b1(z) and b2(z) are the redshift-dependent biases for sam-
ples 1 and 2, respectively, n2(z) is the normalised redshift selec-
tion function for sample 2, ξ(R, z) is the matter auto-correlation
function at redshift z and comoving three-dimensional separation

R(θ, z, z′) =

√[
χ(z) − χ(z′)

]2
+

[
fK(z′) θ

]2
, (22)

where χ(z) is the radial comoving distance at redshift z and fK(z)
is the angular diameter distance at redshift z.
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For the computation of clustering redshifts, the following
assumptions are made. We first consider the angular correla-
tion function for a spectroscopic tracer sample (denoted with an
index s) and photometric target sample (denoted with an index p)

ωsp(θ, z) = bs(z)
∫ ∞

0
dz′ np(z′) bp(z′) ξ

[
R(θ, z, z′), z

]
. (23)

Angular correlation functions are computed for narrow redshift
slices of the spectroscopic tracer with a mean redshift zi (where
i denotes the redshift bin) and bin width of ∆z. Furthermore,
assuming measurements are only made for small values of θ we
can can make the approximation that ξ , 0 only if the integral
is calculated within the bin’s redshift range zi ± ∆z/2. The nar-
row sizes of the bins means np and bp can be approximated as
constants and therefore Eq. (23) simplifies to

ωsp(θ, zi) = bs(zi) np(zi) bp(zi)ωii(θ, zi), (24)

where

ωii(θ, zi) =

∫ zi+∆z/2

zi−∆z/2
dz′ ξ

[
R(θ, zi, z′), zi

]
. (25)

In our study these expressions were evaluated for the transverse
physical scale r = θχ/(1 + z), which led to the final definition of
the angular correlation function for clustering redshifts,

ωsp(r, zi) = bs(zi) np(zi) bp(zi)ωii(r, zi). (26)

Thus we can evaluate the target sample’s redshift selection func-
tion np by rearranging Eq. (26) for

np(zi) =
ωsp(r, zi)

bs(zi) bp(zi)ωii(r, zi)
. (27)

The above equation requires knowledge of the bias-redshift rela-
tion for both the spectroscopic tracer and photometric target
sample. By evaluating Eq. (26) for the angular auto-correlation
functions for the spectroscopic and photometric samples we can
define the bias functions as

bx =

√
∆zωxx(r, zi)
ωii(r, zi)

, (28)

where x can denote either the spectroscopic tracer or photomet-
ric target sample. Since the auto-correlation function is evaluated
in a single, narrow redshift bin, the normalised redshift selec-
tion function nx → 1/∆z. Using these relations, Eq. (27) can be
expressed as

np(zi) =
ωsp(r, zi)

∆z
√
ωss(r, zi)ωpp(r, zi)

. (29)

However, in practice ωpp(r, z) is difficult to obtain, since we do
not know the photometric sample redshifts a priori, and thus can-
not bin target galaxies to measure the correct auto-correlations
and anchor the photometric sample galaxy bias. The result is that
the np(z) is biased and requires a correction scheme to account
for any redshift evolution of the photometric sample galaxy bias.
Several bias mitigation strategies can be employed.

Method 1: No corrections are applied. This is useful to test
the success of the following bias correction methods. This means
we assume np(z) ∝ ωsp(r, z).

Method 2: The spectroscopic biases are computed from the
auto-correlation functions and are incorporated in the np(z) com-
putation. This means we use Eq. (29) but ωpp(r, z) is evaluated

for the entire tomographic bin instead of within thin redshift
slices.

Method 3: ‘Self-consistent bias mitigation’ uses a one-
parameter redshift power law, Bα(z), fitted to the observed auto-
and cross-correlations to account for redshift evolution in bp
(Davis et al. 2018; van den Busch et al. 2020)

Bα(z) = (1 + z)α ∝
√

∆zi ω̄pp(z), (30)

where α is a free model parameter, and barred correlations ω̄(z)
correspond to integrals over ω(r, z) between chosen limits rmin
and rmax. This means ωpp in Eq. (29) is replaced with Bα(z)2/∆z.

Method 4: The bias for the photometric sample is com-
puted from the auto-correlation function for only the photomet-
ric galaxies with true redshifts within a given redshift slice.
Equation (29) is therefore applied exactly. We note that this
method can only be applied to simulated data, and is useful for
assessing the accuracy of other bias correction schemes.

3.2. Cross-correlating redshifts

We compute clustering correlations in the Flagship data using
the single-bin (defined by rmin, rmax) method of Schmidt et al.
(2013) and Ménard et al. (2013), implemented with the Davis-
Peebles clustering estimator (Davis & Peebles 1983) as follows:

ω̄ =
NR

∫ rmax

rmin
dr W(r) DD(r)

ND
∫ rmax

rmin
dr W(r) DR(r)

− 1, (31)

where W(r) ∝ rβ (e.g., β = −1; Schmidt et al. 2013;
Ménard et al. 2013), DD(r) and DR(r) are galaxy-galaxy and
galaxy-random pair counts (in the comoving bin centred on r),
respectively, and NR/ND re-normalises pair counts to account for
over-sampling of random points relative to the data. The method
follows van den Busch et al. (2020) and uses the software pack-
age YAW5 described in van den Busch et al. (2020) with errors
and covariance matrices estimated using bootstrap resampling.

3.3. Redshift distribution fitting

Since the clustering redshift measurements have Gaussian error
distributions, they allow for negative n(z) values. Of course,
no true PDF can exhibit this property and as a result the
raw clustering redshift measurements will artificially inflate the
uncertainties on the mean redshift 〈z〉. Therefore, we did not
determine 〈z〉 directly from the clustering redshift measure-
ments but rather by fitting model n(z) distributions. Two model
n(z) distributions were considered. The first model, the shifted-
true model, is simply the true n(z) measured from simulations
with the addition of two free parameters: A and δz, which are
the amplitude and shift parameters, respectively (explained in
greater detail in Sect. 3.3.1). The second model is the sup-
pressed Gaussian process (suppressed-GP) model discussed in
Sect. 3.3.2, which, unlike the first model, makes no assumptions
about the shape of the n(z) distribution. In both cases, the mod-
els are not normalised, since normalisation cannot be enforced
on the clustering redshift measurements. Normalisation of the
model is therefore only conducted when we are calculating the
mean of the PDF.

5 https://github.com/jlvdb/yet_another_wizz
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3.3.1. Shifted-true

In the shifted-true model the clustering redshift measurements
are fitted to the true n(z). If these were real data, this true n(z)
would not be known and would have to be estimated through for-
ward modelling on simulations such as Flagship, or from direct
calibration (van den Busch et al. 2020). The measured n(z) is fit-
ted with two parameters, a shift along the redshift direction δz
and an amplitude A,

nmodel(z; δz, A) = A ntrue(z + δz). (32)

Fitting with the true distribution allows us to test the robust-
ness of the output clustering redshift measurements, since the
resultant best-fit values should be consistent with δz = 0 in
the absence of systematic errors. The parameters are determined
using a Gaussian likelihood,

lnL
[
δz, A | n̂(z), σn̂(z)

]
= −

1
2

[
n̂(z) − nmodel(z; δz, A)

σn̂(z)

]2

, (33)

where n̂(z) and σn̂(z) are the clustering redshift measurements
and 68.3% confidence intervals, respectively.

3.3.2. Suppressed Gaussian process

Whilst the shifted-true model is a valuable test for systematic
errors, it is important to note that we will not have access to
such a model for real data. In previous studies, clustering red-
shifts were fitted to models based on simulated photometric red-
shift samples while Gatti et al. (2022) used direct calibration of
the data. Although the simulated photometric redshift n(z) may
work as a good proxy for the real model, it may be better to
have a model that is more flexible and could be relied upon in a
more general setting. With this in mind, we present a new, non-
parametric approach to fitting clustering redshift distributions
based upon Gaussian processes (GPs, and featuring a suppres-
sion function that damps signals in regions where the clustering
redshift measurements are consistent with zero.

A GP is first fitted to the clustering redshift measurements.
This is carried out by the Python package George6 using a
Matern-3/2 kernel. One benefit of such a model is that we can
now draw random samples from the distribution to measure the
mean redshift and its uncertainty. However, as with the clus-
tering redshift measurements there is nothing limiting the GP
model from drawing samples that are negative. This issue is fur-
ther compounded by the fact that uncertainties crossing zero will
create spurious fluctuations in the GP samples. To ensure that the
GP is positive, and to remove spurious signals where the clus-
tering redshift measurement is consistent with zero, we apply
a suppression function to the GP realisations. The suppression
function is defined by the following expression,

S (x, k) =


0, x ≤ 0,
1 − (1 − x)k, 0 < x < 1,
1, x ≥ 1,

(34)

where k is a damping factor taken to be 0.3 in this study and

x =
ni

GP(z)

ΣT

(
G ∗ Σ

) , (35)

ni
GP(z) is a random GP realisation, ΣT = 3 is the S/N threshold,

Σ = nGP(z)/σGP(z) is the S/N function (where nGP and σGP are

6 https://george.readthedocs.io/en/latest/

0.0

0.5

1.0

n
(z

)

GP Model(a)

0

1

n
(z

)

GP Samples(b)

0.0

0.5

1.0

n
(z

)

Suppression(c)

0.0

0.5

1.0

n
(z

)

Suppressed GP Samples(d)

0.25 0.50 0.75 1.00 1.25 1.50 1.75
z

0.0

0.5

1.0

n
(z

)

Suppressed GP Model(e)

Fig. 3. Method for fitting suppressed-GP models to clustering red-
shift, n(z), measurements. The true n(z) for one tomographic bin is
shown with dashed black lines. The measured clustering redshift, n(z),
is shown with black markers and error bars. (a) We fit a GP model to
the clustering redshift, n(z), measurements. (b) We draw random real-
isations from the GP. (c) We construct a suppression function, taking
as input the GP draw and the smoothed S/N of the clustering redshift
measurement. (d) We multiply the random realisations from the GP by
the suppression function. This ensures that the suppressed-GP model is
always positive and suppresses low-S/N fluctuations in the GP. (e) We
construct 68.3% and 95.5% confidence envelopes from samples of the
suppressed-GP model.

the GP mean and 68.3% confidence interval), G is a Gaussian
with standard deviation of 0.05 and ∗ is the convolution oper-
ator. The Gaussian convolution with the S/N prevents spurious
random fluctuations in the S/N from impacting the activation of
the suppression function and ensures the tails of the clustering
redshift n(z) are not too harshly damped. A standard deviation
drastically smaller than 0.05 will be smaller than the bin size of
the clustering redshift measurements and therefore will be equiv-
alent to no smoothing. On the other hand, larger values will more
strongly correlate bins that may be problematic since, in some
cases, the n(z) profile spans across only ∼5 bins and may be com-
pletely washed out.

An example of this procedure is shown in Fig. 3. The
suppressed-GP has the desired effect, that is to say, noisy PDFs
are not drawn in regions of the clustering redshifts that are con-
sistent with zero. A potential shortcoming is that tails in the
distribution will be suppressed if they have low S/N. Steps to
mitigate this effect could be studied in future work by exploring
alternative suppression functions and techniques.
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Fig. 4. Flagship footprint and area rescaling subregions. Left: bootstrap subregions, indicated with different colours, that are used to calculate errors
in YAW. Right: different subregions of the Flagship footprint, shown with different colours, used to establish the relation between the tracer–target
overlap area and the uncertainty on the mean redshifts of tomographic bins. The four subpanels show the Flagship footprint divided into 2 (top
left), 4 (top right), 8 (bottom left), and 16 (bottom right) subregions. These are plotted on an orthographic projection of a subset of the sky focused
on the Flagship footprint. The RA and Dec grid is shown with dashed grey lines. The values of the grid lines are indicated where they intercept
the x-axis for the RA grid and the y-axis for the Dec grid.

3.4. Area rescaling

We seek to provide estimates for the uncertainties of the np(z)
determination as a function of the projected Euclid data volume;
thus we must extrapolate from the 402 deg2 of the Flagship area
to the larger spectroscopic overlap areas, and also attempt to
characterise the impact of sample variance. Euclid is projected
to overlap with DESI over 9015 deg2, and with both DESI and
BOSS over 6005 deg2. To rescale the determined uncertainties
on mean redshifts, we divided the Flagship lightcone into mul-
tiple subdivisions (see Fig. 4) and re-ran our analysis on each
of these subdivisions independently. This allowed us to approxi-
mate the relationship between the tracer–target overlap area and
the uncertainties on 〈z〉. We then fitted these relationships with
power laws, and extrapolated to estimate the uncertainties from
the full Euclid, BOSS, and DESI overlap area. We note we do
not redefine the bootstrap regions when we run the analysis on
each subdivision, this means estimates of the error are less accu-
rate for smaller regions since they are based on fewer defined
bootstrap regions. An alternative approach would be to use
purely shot-noise covariance, but we leave this for future work.
Furthermore, since these regions overlap, measurements on the
subregions will be strongly correlated.

4. Results

This section details the results of our clustering redshift calibra-
tion, focusing on the uncertainties of mean redshift determina-
tion across our ten mock tomographic bins.

4.1. Clustering redshift measurements

We measured clustering redshifts using the YAW software pack-
age between scales rmin = 100 kpc and rmax = 1000 kpc (follow-
ing the scales used by KiDS; van den Busch et al. 2020), consid-
ering separately each of the four simulated Euclid photometric
redshift catalogues presented by Euclid Collaboration (2021b).
We performed the analysis independently for the full Flagship
region (with photo-z), and for each subregion (shown in Fig. 4).

In Fig. 5 we compare the clustering redshift measurements
obtained by YAW (shown with purple error bars) to the true red-
shift distribution of the ‘mean Rubin’ photometric catalogue
on Flagship. The measurements clearly trace the true distri-
bution, and showcase the capability of clustering redshifts to
retrieve redshift distributions for photometric catalogues. There
are, however, some significant fluctuations, for example at the
peak of bin 2. The measurements in Fig. 5 are corrected for
the spectroscopic sample galaxy bias (method 2, discussed in
Sect. 3.1).

4.2. Mean redshifts

Having measured the clustering redshifts, we wished to constrain
and compare each bin’s n(z) distribution by measuring the mean
redshift 〈z〉 and comparing to the truth. The mean redshift is
determined by calculating

〈z〉 =

NCC∑
i=1

zi n(zi) ∆z, (36)
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Fig. 5. Clustering redshift measurements in comparison to the true n(z) for ten simulated Euclid Flagship tomographic photo-z bins. Measurements
from YAW are shown in purple, with error bars indicating 95.5% confidence intervals. The measurements clearly trace the true n(z), albeit with
some spurious local fluctuations. These fluctuations probably arise due to an incomplete galaxy bias correction methodology. The bias correction
method used in this figure is method 2 (Sect. 3.1).

where n(z) is the normalised model redshift distribution within
the redshift ranges zmin and zmax, zi is the redshift centre of a clus-
tering redshift bin and n(zi) a clustering redshift measurement.
The i is used to denote a specific measurement and NCC the total
number of measurements. We computed 〈z〉 for the n(z) model
only within the redshift range where clustering redshift measure-
ments were made (therefore zmin = 0.05 and zmax = 1.8) while
true values 〈z〉truth were computed from the true n(z) measured
across the entire Flagship range z < 2.2. For both the shifted-
true and suppressed-GP models, we drew 1000 realisations of
the redshift distribution (for the shifted-true model, this means
drawing random shift parameters from the posterior likelihood).
We determine the mean redshift 〈z〉 from the sample n(z), and
the standard deviation on the mean σ (〈z〉) from the variance
of the sample 〈z〉. In Fig. 6 we display the mean redshift error
〈z〉 − 〈z〉truth for both models, in each bin and for the different
photometric catalogues, constrained by the full Flagship foot-
print. The constraints show significant biases, in particular for
bins 7–10, which are biased to lower redshifts for both models.
For the shifted-true model we see some significant biases in bins
2 and 4, independent of photo-z method. The suppressed-GP is
biased for bins 1 and 4, but only for the photometric catalogue
‘mc’. The broadly similar performance of the suppressed-GP and
shifted-true models shows that the suppressed-GP model is per-
forming well, and that it is a robust alternative for n(z) fitting. We
also note that the directions and amplitudes of biases appear to be

consistent between models, suggesting that systematic errors are
independent of the fitting method for this analysis. Rather sur-
prisingly, bin 3, which is placed in the region (z = 0.4–0.6) with
fewer spectroscopic tracers, is relatively unbiased. One interest-
ing property of this bin is that the tails on both sides are well
constrained, due to the high number of spectroscopic tracers on
either of the tails of the distribution. This suggests the cluster-
ing redshift performance on the tails may be driving biases in
the other results. We note that we also find the errors on zmean
and zmean Rubin to be smaller than the zmc and zmc Rubin for the
suppressed-GP owing to the larger tails in the ‘mc’ methods.

In Fig. 7 we compare the bias correction methods outlined in
Sect. 3.1 by calculating the reduced χ2

r for each method,

χ2
r =

1
NBins

NBins∑
i=1

[
〈z〉 − 〈z〉truth

0.002 (1 + 〈z〉truth)

]2

, (37)

on the photometric catalogue ‘mean Rubin’, where NBins is the
number of tomographic bins. We see that method 1 (no galaxy
bias correction) performs worst with a χ2

r = 7.8, while method
2 (spectroscopic sample bias correction; the baseline method
for all other figures) performs slightly better with a χ2

r = 4.2.
Method 3, which fits a power law for photometric sample bias
correction, performs very similarly to method 2 – with a χ2

r =
4.2. Method 4, which performs the best with a χ2

r = 3.7,
measures the true bias for photometric galaxies in each of the
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Fig. 6. Error on the mean redshift determination 〈z〉 − 〈z〉truth for ten Euclid Flagship tomographic bins, for each of our four photometric redshift
catalogues (‘mean Rubin’ in dark purple, ‘mc Rubin’ in purple, ‘mean’ in dark green, and ‘mc’ in light green, with dark and light shades indicating
68.3% and 95.5% uncertainties). The grey bands show the target uncertainties for Euclid. Two n(z) fitting methods are shown: the shifted-true
model (left, Sect. 3.3.1) and the suppressed-GP model (right, Sect. 3.3.2), each fit to clustering redshift measurements made with spectroscopic
sample bias corrections (i.e. method 2, Sect. 3.1).

spectroscopic slices, and cannot be measured on real data. How-
ever, in simulations like Flagship, it allows us to test the signif-
icance and implications of residual biases. Method 4 shows that
correcting for photometric galaxy biases in bins 1–6 removes any
systematic biases on the determination of the mean redshift, and
indicates that the mean redshift uncertainties may be underesti-
mated by other methods. It should be possible to calibrate for
such underestimations of σ(〈z〉) with realistic simulations like
Flagship. We assess whether or not the extra noise component
revealed by method 4 is likely to affect our conclusions, as we
forecast uncertainties on 〈z〉 versus tracer–target overlap area in
Sect. 4.3. Bins 7–10 remain significantly biased in 〈z〉, even for
method 4, which is why the χ2

r is still significantly larger than 1.
The causes of these persistent biases are currently unknown, and
require further investigation. They may be affected by the cross-
correlation estimator; a move to the superior Landy & Szalay
(1993) estimator should be explored in future work. Alterna-
tively, the definition of target sample tomographic bins may be
sub-optimal; wider equi-populated bins at higher redshifts will
offer lower signal-to-noise of clustering redshift measurements,
since those galaxies span a larger volume in a flux-limited survey
where the number density falls with increasing redshift. Optimi-

sation of the target tomography is another promising avenue for
future work.

4.3. Area rescaling

A determination of whether or not clustering redshifts can con-
strain the σ(〈z〉) of Euclid tomographic redshift bins to less than
0.002 (1 + z) requires extrapolation. We estimated the relation
between σ(〈z〉) and tracer–target overlap area by measuring 〈z〉
within subregions of the Flagship region (see Fig. 4). We fit-
ted the σ(〈z〉) data with power laws and then extrapolated to
the total projected overlap. The relations can be seen in Fig. 8
for the shifted-true model, calibrated by method 2 (Sect. 3.1)
clustering redshifts measured on the ‘mean Rubin’ photometric
catalogue. The extrapolation projects the uncertainties to be sig-
nificantly smaller than the required uncertainties for Euclid. We
can be confident of this statement, as even the 402 deg2 Flagship
area yields uncertainties approaching or surpassing the Euclid
requirement. Similar results are seen for the other three photo-
metric catalogues. A possible cause for concern is the underes-
timation of the errors in the four highest-redshift bins, shown in
Fig. 7. This underestimation can be calibrated with comparisons
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Fig. 7. Error on the mean redshift determination, 〈z〉 − 〈z〉truth, in ten
Euclid tomographic redshift bins, for each of the four galaxy bias
correction strategies (Sect. 3.1), compared via the shifted-true model
(Sect. 3.3.1). In dark blue is method 1, where no corrections are applied;
in purple is method 2, where the spectroscopic galaxy bias is calibrated
by spectroscopic auto-correlations; in magenta is method 3, where the
photometric galaxy bias is calibrated by a power-law fit to noisy, photo-
z-binned photometric auto-correlations; and in light pink is method 4,
where the photometric galaxy bias is calibrated using auto-correlations
binned by true redshifts (not applicable to real data). Dark and light
shades indicate 68.3% and 95.5% confidence intervals. The grey band
shows the target uncertainties for Euclid. Method 4 shows that system-
atic biases in bins 1–6 are caused by incomplete bias corrections, whilst
the biases persist for higher-redshift bins, suggesting some other source
of systematic error.

to simulations (such as Flagship), and accommodated by widen-
ing the error bars. We find that these uncertainties are underesti-
mated by a factor of about two. Since Fig. 8 shows the projected
errors for the full overlap region to be around an order of magni-
tude smaller than the Euclid’s required uncertainties, we are con-
fident that these underestimated errors can be accommodated,
and that the Euclid target remains achievable.

5. Conclusion

We measured clustering redshifts in the Flagship simulation to
test their uncertainties in determining the mean redshifts, 〈z〉,

for Euclid tomographic bins. The method uses cross-correlations
with mock spectroscopic samples, modelled after BOSS, DESI,
and Euclid NISP-S. Clustering redshifts were determined using
the YAW software, for transverse pair separations between
100 kpc and 1000 kpc, using simple galaxy bias correction
schemes. Simulated photometric samples were constructed
using the DNF photometric redshift code (Euclid Collaboration
2021b). The redshift determinations were constructed from two
sets of training samples, one that is fully representative in red-
shift and magnitude and a second that has a completeness drop
off in IE magnitudes similar to surveys such as Rubin LSST
(denoted with ‘Rubin’).

The clustering redshift distributions were fitted with two
models: The first modifies the true n(z) with an amplitude and
a shift parameter (the ‘shifted-true’ model). The second fits a
‘suppressed-GP’ model, taking advantage of the non-parametric
fitting ability of GPs and suppressing low signal-to-noise
and negative fluctuations with a S/N-dependent suppression
function.

These two models were fitted to Flagship measurements over
an area of 402 deg2. By making measurements of the clustering
redshifts on subregions of the Flagship footprint, we established
power-law relations between the uncertainty on the mean red-
shift and the spectroscopic–photometric overlapping area. We
used these relations to extrapolate the uncertainty to the full
expected overlap area for BOSS, DESI, and Euclid (approxi-
mately 6000 deg2) and showed that both models achieve uncer-
tainties on the mean redshifts of less than 0.002 (1 + z) – well
within the required uncertainties for the Euclid FoM on dark
energy of >400.

However, systematic biases currently dominate the mean
redshift determination and are independent of the redshift distri-
bution model. Determining and mitigating these sources of sys-
tematic biases will be critical for the usage of cross-correlation
redshifts by Euclid. The most difficult step for clustering red-
shift calibration is determining the galaxy bias of photomet-
ric samples. This is the primary source of systematic error and
was shown to be the cause of systematic biases in the low-
redshift bins. However, these biases persist in the high-redshift
bins even when taking advantage of simulation information to
correct exactly for photometric galaxy bias, meaning some other
source of error is responsible.

Further studies should seek to characterise and mitigate these
additional sources of systematic error, by exploring different
scales, biasing models, or cross-correlation estimators. Photo-z
are limited to z < 1.6 to ensure that the true redshifts of galax-
ies rarely exceed z > 1.8 in the tenth tomographic bin, since the
analysis was limited to the redshift regime where spectroscopic
tracers were defined (i.e. z < 1.8). In a future analysis, quasar
large-scale structure tracers from BOSS, eBOSS, and DESI
should allow for a measurement of the n(z) for high-redshift
tomographic bins, though the sparsity of quasars is likely to pose
challenges. As simulations of quasar samples are more difficult
to implement, since they are highly biased tracers with more
complex selection functions, we have not included them in this
analysis. Future studies should consider creating such samples
so that the biases and uncertainties on these higher-redshift bins
can be better determined.

This study is based on idealised assumptions where target
and tracer samples suffer no observational complications, such
as the spatial incompleteness of spectroscopic samples, tracer–
target density correlations with Galactic foregrounds, or system-
atic depth variations. As such, future studies, and Euclid photo-z
mocks in particular, should attempt to model these sources of
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Fig. 8. Uncertainty on the mean redshift for each Euclid tomographic redshift bin shown as a function of tracer–target overlap area. The red points
show the uncertainty on the mean redshift for each subregion, determined by fitting the shifted-true model (Sect. 3.3.1) to measured clustering
redshifts (bias correction method 2, Sect. 3.1), with the largest area points representing constraints from the full 402 deg2 Flagship footprint. These
points are used to fit a power-law relationship between overlap area and mean redshift uncertainty, shown in blue (the line represents the mean
fit and the envelope the uncertainty). Extrapolated to the full area overlap of BOSS, DESI, and Euclid (the dotted purple line), the projected
uncertainties on the mean are shown to be much smaller than the required uncertainties for Euclid, itself indicated by the dashed black line.

systematic error. Furthermore, the photometric catalogues used
in this study assume supplementary photometry from a Rubin-
like survey; in reality, only the southern sky will be supple-
mented with Rubin, and the northern sky will use photometry
from an array of imaging surveys such as CFHT, Pan-STARRS,
and J-PAS. This is likely to result in systematic differences in the
quality of photo-z based on positions on the sky. To study these
effects, realistic Euclid mock catalogues that attempt to simulate
these systematic errors across the full sky are required.
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