1,692 research outputs found

    Voltammetric Studies of the Electrochemical and Interfacial Behaviour of DNA at Charged Interfaces

    Get PDF
    A survey of the essentials of the experimental evidence assembled in systematic extended voltammetric studies of denatured and native DNA is rpresented. Applying an advanced verision of single triangle sveep voltammetry at the HMDE and by supporting measurements with various other polarographic methods, :such as phase sensitive a.c.-voltammetry, the adsrnrption parameters, the sequence of i!ll!terfacial events as a function of adsorption time and adso1rption potentia·l arid the kinetics of the electrode process have been elucidated. While for pH~ 7 in adsorbed DNA the adenine and cytosime moieties are immediately reducible in a totally irreversible electrode reaction Y•ielding a strongly adsorbed compact film of reduction products, they have to become accessible to electron and proton transfer in adsorbed native DNA in a sequence of prior deconformation steps involving opening and unwinding of the double helix under the co.nstraint exerted by the adsorption interactions and by the interfacial electric field. In a fundamental biophysicochemical sense the results enable general conclusions on the behaviour of DNA when it interacts with charged interfaces d.m the living cell

    Voltammetric Studies of the Electrochemical and Interfacial Behaviour of DNA at Charged Interfaces

    Get PDF
    A survey of the essentials of the experimental evidence assembled in systematic extended voltammetric studies of denatured and native DNA is rpresented. Applying an advanced verision of single triangle sveep voltammetry at the HMDE and by supporting measurements with various other polarographic methods, :such as phase sensitive a.c.-voltammetry, the adsrnrption parameters, the sequence of i!ll!terfacial events as a function of adsorption time and adso1rption potentia·l arid the kinetics of the electrode process have been elucidated. While for pH~ 7 in adsorbed DNA the adenine and cytosime moieties are immediately reducible in a totally irreversible electrode reaction Y•ielding a strongly adsorbed compact film of reduction products, they have to become accessible to electron and proton transfer in adsorbed native DNA in a sequence of prior deconformation steps involving opening and unwinding of the double helix under the co.nstraint exerted by the adsorption interactions and by the interfacial electric field. In a fundamental biophysicochemical sense the results enable general conclusions on the behaviour of DNA when it interacts with charged interfaces d.m the living cell

    Integrated Disposal Facility FY2011 Glass Testing Summary Report

    Get PDF
    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses

    Vacancy-mediated dopant diffusion activation enthalpies for germanium

    Get PDF
    Electronic structure calculations are used to predict the activation enthalpies of diffusion for a range of impurity atoms (aluminium, gallium, indium, silicon, tin, phosphorus, arsenic, and antimony) in germanium. Consistent with experimental studies, all the impurity atoms considered diffuse via their interaction with vacancies. Overall, the calculated diffusion activation enthalpies are in good agreement with the experimental results, with the exception of indium, where the most recent experimental study suggests a significantly higher activation enthalpy. Here, we predict that indium diffuses with an activation enthalpy of 2.79 eV, essentially the same as the value determined by early radiotracer studies

    Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    Get PDF
    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes

    Critical and direct involvement of the CD23 stalk region in IgE binding

    Get PDF
    BackgroundThe low-affinity receptor for IgE, FcεRII (CD23), contributes to allergic inflammation through allergen presentation to T cells, regulation of IgE responses, and enhancement of transepithelial allergen migration.ObjectiveWe sought to investigate the interaction between CD23, chimeric monoclonal human IgE, and the corresponding birch pollen allergen Bet v 1 at a molecular level.MethodsWe expressed 4 CD23 variants. One variant comprised the full extracellular portion of CD23, including the stalk and head domain; 1 variant was identical with the first, except for an amino acid exchange in the stalk region abolishing the N-linked glycosylation site; and 2 variants represented the head domain, 1 complete and 1 truncated. The 4 CD23 variants were purified as monomeric and structurally folded proteins, as demonstrated by gel filtration and circular dichroism. By using a human IgE mAb, the corresponding allergen Bet v 1, and a panel of antibodies specific for peptides spanning the CD23 surface, both binding and inhibition assays and negative stain electron microscopy were performed.ResultsA hitherto unknown IgE-binding site was mapped on the stalk region of CD23, and the non–N-glycosylated monomeric version of CD23 was superior in IgE binding compared with glycosylated CD23. Furthermore, we demonstrated that a therapeutic anti-IgE antibody, omalizumab, which inhibits IgE binding to FcεRI, also inhibited IgE binding to CD23.ConclusionOur results provide a new model for the CD23-IgE interaction. We show that the stalk region of CD23 is crucially involved in IgE binding and that the interaction can be blocked by the therapeutic anti-IgE antibody omalizumab

    Is there loss or qualitative changes in the expression of thyroid peroxidase protein in thyroid epithelial cancer?

    Get PDF
    There is disagreement concerning the expression of thyroid peroxidase (TPO) in thyroid cancer, some studies finding qualitative as well as quantitative differences compared to normal tissue. To investigate TPO protein expression and its antigenic properties, TPO was captured from a solubilizate of thyroid microsomes by a panel of murine anti-TPO monoclonal antibodies and detected with a panel of anti-human TPO IgGκ Fab. TPO protein expression in 30 samples of malignant thyroid tissue was compared with TPO from adjacent normal tissues. Virtual absence of TPO expression was observed in 8 cases. In the remaining 22 malignant thyroid tumours the TPO protein level varied considerably from normal to nearly absent when compared to normal thyroid tissue or tissues from patients with Graves' disease (range less than 0.5 to more than 12.5 μg mg−1 of protein). When expressed TPO displayed similar epitopes, to that of TPO from Graves' disease tissue. The results obtained by the TPO capturing method were confirmed by SDS-PAGE and Western blot analysis with both microsomes and their solubilizates. The present results show that in about two-thirds of differentiated thyroid carcinomas, TPO protein is expressed, albeit to a more variable extent than normal; when present, TPO in malignant tissues is immunologically normal. © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    A System-Wide Investigation of the Dynamics of Wnt Signaling Reveals Novel Phases of Transcriptional Regulation

    Get PDF
    Aberrant Wnt signaling has been implicated in a wide variety of cancers and many components of the Wnt signaling network have now been identified. Much less is known, however, about how these proteins are coordinately regulated. Here, a broad, quantitative, and dynamic study of Wnt3a-mediated stimulation of HEK 293 cells revealed two phases of transcriptional regulation: an early phase in which signaling antagonists were downregulated, providing positive feedback, and a later phase in which many of these same antagonists were upregulated, attenuating signaling. The dynamic expression profiles of several response genes, including MYC and CTBP1, correlated significantly with proliferation and migration (P<0.05). Additionally, their levels tracked with the tumorigenicity of colon cancer cell lines and they were significantly overexpressed in colorectal adenocarcinomas (P<0.05). Our data highlight CtBP1 as a transcription factor that contributes to positive feedback during the early phases of Wnt signaling and serves as a novel marker for colorectal cancer progression

    IgE Mediated Autoallergy against Thyroid Peroxidase – A Novel Pathomechanism of Chronic Spontaneous Urticaria?

    Get PDF
    Chronic spontaneous urticaria (csU), which is characterized by recurrent episodes of mast cell-driven wheal and flare-type skin reactions, is often associated with elevated total IgE levels and thyroid autoimmunity. We speculate that some csU patients express IgE autoantibodies against thyroid antigens such as thyroid peroxidase (TPO), which could bind to skin mast cells and induce their activation.We developed and used a site-directed human IgE capture ELISA to quantify IgE-anti-TPO. We used this assay and investigated csU patients (n = 478) and healthy control subjects (n = 127) for IgE-anti-TPO and then assessed IgE-anti-TPO-positive and -negative csU patients for clinical and serological differences. ( = 61%, IgE-anti-TPO: median 6.67, interquartile range 5.39–8.24). IgE-anti-TPO-positive and -negative csU patients had very similar distributions of age and gender as well as disease activity and duration. IgE-anti-TPO-positive csU patients exhibited significantly higher IgG-anti-TPO levels and lymphocyte counts as well as decreased C4 complement levels.Our findings show that a sizeable subgroup of csU patients expresses IgE antibodies against thyroid peroxidase. These autoantibodies could cause “autoallergic” mast cell activation, a novel pathomechanism of chronic spontaneous urticaria

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes
    corecore