273 research outputs found

    A new software tool for Wide-Angle reflection/refraction Seismic data : Processing And Representation (WASPAR)

    Get PDF

    Sigsensual: A Project to Develop an Ocean Bottom Seismometer Prototype and its Associated Signal Processing Software

    Get PDF
    Marine Technology Workshop (Martech05), 17-18 November 2005, Vilanova i la Geltrú, Barcelona.-- 2 pages, 2 figuresPeer Reviewe

    Fine-scale thermohaline ocean structure retrieved with 2-D prestack full-waveform inversion of multichannel seismic data: Application to the Gulf of Cadiz (SW Iberia)

    Get PDF
    18 pages, 9 figures, supporting information https://dx.doi.org/10.1002/2016JC011844This work demonstrates the feasibility of 2-D time-domain, adjoint-state acoustic full-waveform inversion (FWI) to retrieve high-resolution models of ocean physical parameters such as sound speed, temperature and salinity. The proposed method is first described and then applied to prestack multichannel seismic (MCS) data acquired in the Gulf of Cadiz (SW Iberia) in 2007 in the framework of the Geophysical Oceanography project. The inversion strategy flow includes specifically designed data preconditioning for acoustic noise reduction, followed by the inversion of sound speed in the shotgather domain. We show that the final sound speed model has a horizontal resolution of ∼ 70 m, which is two orders of magnitude better than that of the initial model constructed with coincident eXpendable Bathy Thermograph (XBT) data, and close to the theoretical resolution of O(λ). Temperature (T) and salinity (S) are retrieved with the same lateral resolution as sound speed by combining the inverted sound speed model with the thermodynamic equation of seawater and a local, depth-dependent T-S relation derived from regional conductivity-temperature-depth (CTD) measurements of the National Oceanic and Atmospheric Administration (NOAA) database. The comparison of the inverted T and S models with XBT and CTD casts deployed simultaneously to the MCS acquisition shows that the thermohaline contrasts are resolved with an accuracy of 0.18oC for temperature and 0.08 PSU for salinity. The combination of oceanographic and MCS data into a common, pseudo-automatic inversion scheme allows to quantitatively resolve submeso-scale features that ought to be incorporated into larger-scale ocean models of oceans structure and circulationThe work has been partially supported by the projects KALEIDOSCOPE and CO-Dos financed by REPSOL and MINECO project POSEIDON (CTM2010-21569) and HADES (CTM2011-30400-C02). B. Biescas work has been funded by the European Commission through the Marie Curie Action FP7-PEOPLE-2012-COFUND-600407Peer Reviewe

    tomo3d: a new 3-D joint refraction and reflection travel-time tomography code for active-source seismic data

    Get PDF
    European Geosciences Union General Assembly 22-27 April 2012, Vienna, Austria.-- 1 pageWe present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat’s principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also offers the possibility of including water-layer multiples in the modeling, whenever this phase can be followed to greater offsets than the primary phases. This increases the quantity of useful information in the data and yields more extensive and better constrained velocity and geometry models. We will present results from benchmark tests for forward and inverse problems, as well as synthetic tests comparing an inversion with refractions only and another one with both refractions and reflectionPeer Reviewe

    Wide-angle reflection and refraction seismic profile from the outer part of the gulf of Cadiz: nearest-seis cruise.

    Get PDF
    We will explain the first interpretations from a marine refraction and wide-angle reflection seismic profile acquired in the outer part of the Gulf of Cadiz in November 2008, in the framework of the Nearest-Seis cruise.Peer Reviewe

    Multiphase tectonic interaction of Tyrrhenian - Tunisia Margin - Ionian systems: Implications for regional seismogenesis

    Get PDF
    European Geosciences Union (EGU) General Assembly 2020, 4-8 May 2020The region at the transition from the west to the east Mediterranean is a complex puzzle of terrains spanning in age from the Mesozoic Ionian lithosphere to the Pleistocene arc and back arc domains of the Tyrrhenian system. Although the region has had a complicated evolutionary history, the current configuration of terrains fundamentally denotes Miocene to recent kinematics. In this contribution we present new data from Tunisia Margin showing the evolution from its formation in early Miocene to recent, the tectonic interaction with the opening of the Tyrrhenian system and its current inversion, and discuss the implications for the regional kinematics evolution. The Tyrrhenian is no longer extending, but all basin borders indicate currently active large-scale thrusting to strike slip tectonics. Tunisia margins formed by a well-know contractional tectonic phase in early Miocene expressed in large-scale tectonics with a clearly imaged thrust and fold belt, cut by Messinian to Pliocene extensional faulting. However, high resolution multibeam bathymetry and images of the shallowest layers indicates ongoing inversion tectonics. We compare the tectonic evolution of north Tunisia and Tyrrhenian with the patterns of deformation of the Ionian tectonic wedge observed in new and reprocessed seismic images. We interpret the current deformation of the Ionian tectonic wedge based on the integration of evolution of the kinematics from the data sets of observations from the three systems. We conclude that the entire region is currently under collision of the Africa Plate with the Adria Plate and the Neogene terrains of the Tyrrhenian Domain. The corollary is the subduction of the Ionian lithosphere is fundamentally stalled so that the megathrust fault is possibly not any longer accumulating significant shortening and most deformation is currently occurring in steeper faults re-activation or cutting the previous structural framewor

    Configuration of geological domains and geodynamic evolution of the Africa-Eurasia plate boundary off SW Iberia revisited based on seismic velocity and density models

    Get PDF
    European Geosciences Union General Assembly 2015 (EGU2015), 12-17 April 2015, Vienna, Austria.-- 1 pageWe present a new classification of geological (basement) domains at the Africa-Eurasia plate boundary offshore SW Iberia, together with a regional geodynamic reconstruction spanning from the Mesozoic extension to the Neogene-to-present-day convergence. It is based on seismic velocity and density models along two regional wide- angle seismic transects, one running NW-SE from the Tagus to the Seine abyssal plains, and the other running N-S from S Portugal to the Seine Abyssal Plain, combined with previously available information. The seismic velocity and density structure at the Seine Abyssal Plain and the internal Gulf of Cadiz indicates the presence of a highly heterogeneous oceanic crust, similar to that described in ultra-slow spreading centers, whereas in the Horseshoe and Tagus abyssal plains, the basement structure resembles that of exhumed mantle sections identified in the Northern Atlantic margin. The integration of all this new information allows defining the presence of three oceanic domains off SW Iberia: (1) the Seine Abyssal Plain domain, generated during the first stages of slow seafloor spreading in the NE segment of the Central Atlantic (Early Jurassic); (2) the Gulf of Cadiz domain, made of oceanic crust generated in the Alpine-Tethys spreading system between Iberia and Africa, which was coeval with the formation of the Seine Abyssal Plain domain and lasted up to the North Atlantic continental break-up (Late Jurassic); and (3) the Gorringe Bank domain, mainly made of rocks exhumed from the mantle with little synchronous magmatism, which formed during the first stages of North Atlantic opening (Early Cretaceous). Our models suggest that the Seine Abyssal Plain and Gulf of Cadiz domains are separated by the Lineament South strike-slip fault, whereas the Gulf of Cadiz and Gorringe Bank domains appear to be limited by a deep thrust fault located at the center of the Horseshoe Abyssal Plain, which coincides with the seismicity cluster nucleated in the middle of the plain that shows moment tensor solutions of reverse faulting at depths of 40–60 km. The formation and evolution of these three domains during the Mesozoic is key to understand the sequence of events that occurred during the first stages of opening of the Northern Atlantic and its connection and interplay with the Western Mediterranean basinPeer Reviewe

    Temperature and salinity observations with high lateral resolution using acoustic data in the Gulf of Cadiz, NE Atlantic Ocean

    Get PDF
    European Geosciences Union General Assembly 2015 (EGU2015), 12-17 April 2015, Vienna, Austria.-- 1 pageWe present a methodology for inverting temperature and salinity from time and space-coincident acoustic reflectivity and XBT data. This method recovers low frequency content ( 10 Hz) from acoustic reflectivity. Afterwards, maps of temperature and salinity are calculated from impedance using the GSW equations of state and an empirical T-S relation. Acoustic data allows to recover the main physical parameters of the ocean along lateral sections of hundreds of km, covering all the full-depth water column and with vertical and lateral resolutions of 10 m and 100 m, respectively. This method was applied in the Gulf of Cadiz, NE Atlantic Ocean to recover the main physical oceanographic parameters in the ocean with accuracies of δTsd = 0.1 C, δSsd = 0.09 and δsd = 0.02kg/m3 for temperature, salinity and potential density. Inverted temperature anomalies reveal baroclinic thermohaline fronts with intrusions.The observations support a mix of thermohaline features created by both double-diffusive and isopycnal stirring mechanismsPeer Reviewe

    Synthetic Modeling for an Acoustic Exploration System for Physical Oceanography

    Get PDF
    10 pages, 6 figures, 1 tableMarine multichannel seismic (MCS) data, used to obtain structural reflection images of the earth¿s subsurface, can also be used in physical oceanography exploration. This method provides vertical and lateral resolutions of O(10¿100) m, covering the existing observational gap in oceanic exploration. All MCS data used so far in physical oceanography studies have been acquired using conventional seismic instrumentation originally designed for geological exploration. This work presents the proof of concept of an alternative MCS system that is better adapted to physical oceanography and has two goals: 1) to have an environmentally low-impact acoustic source to minimize any potential disturbance to marine life and 2) to be light and portable, thus being installed on midsize oceanographic vessels. The synthetic experiments simulate the main variables of the source, shooting, and streamer involved in the MCS technique. The proposed system utilizes a 5-s-long exponential chirp source of 208 dB relative to 1 ¿Pa at 1 m with a frequency content of 20¿100 Hz and a relatively short 500-m-long streamer with 100 channels. This study exemplifies through numerical simulations that the 5-s-long chirp source can reduce the peak of the pressure signal by 26 dB with respect to equivalent air gun¿based sources by spreading the energy in time, greatly reducing the impact to marine life. Additionally, the proposed system could be transported and installed in midsize oceanographic vessels, opening new horizons in acoustic oceanography researchThe first author’s work has been supported by the European Commission through Marie Curie Actions FP7-PEOPLE-2010-IOF-271936 and FP7-PEOPLE-2012-COFUND-600407. This work has been done in the framework of the Spanish project POSEIDON (CTM2010-25169) and the Italian National Flagship Programme RITMARE (Programma Nazionale della Ricerca 2011-2013 MIUR). We want to acknowledge the team of GO project funded by the EU (015603-GO-STREP)Peer Reviewe
    corecore