70 research outputs found

    Stable Kneser Graphs are almost all not weakly Hom-Idempotent

    Get PDF
    A graph G is said to be hom-idempotent if there is an homomorphism from G 2 to G, and weakly hom-idempotent if for some n ≥ 1 there is a homomorphism from G n+1 to G n . Larose et al. [Eur. J. Comb. 19:867-881, 1998] proved that Kneser graphs KG(n, k) are not weakly hom-idempotent for n ≥ 2k + 1, k ≥ 2. We show that 2-stable Kneser graphs KG(n, k) 2−stab are not weakly hom-idempotent, for n ≥ 2k + 2, k ≥ 2. Moreover, for s, k ≥ 2, we prove that s-stable Kneser graphs KG(ks+1, k) s−stab are circulant graphs and so hom-idempotent graphs

    A distributed approximation algorithm for the minimum degree minimum weight spanning trees

    No full text
    International audienceFischer has shown how to compute a minimum weight spanning tree of degree at most bΔ+logbnb \Delta^* + \lceil \log_b n\rceil in time O(n4+1/ ⁣lnb)O(n^{4 + 1/\!\ln b}) for any constant b>1b > 1, where Δ\Delta^* is the value of an optimal solution and nn is the number of nodes in the network. In this paper, we propose a distributed version of Fischer's algorithm that requires messages and time complexity O(n2+1/ ⁣lnb)O(n^{2 + 1/\!\ln b}), and O(n)O(n) space per node

    k-tuple colorings of the Cartesian product of graphs

    Get PDF
    A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known that χ(G□H)=max{χ(G),χ(H)}. In this paper, we show that there exist graphs G and H such that χk(G□H)>max{χk(G),χk(H)} for k≥2. Moreover, we also show that there exist graph families such that, for any k≥1, the k-tuple chromatic number of their Cartesian product is equal to the maximum k-tuple chromatic number of its factors.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Koch, Ivo Valerio. Universidad Nacional de General Sarmiento. Instituto de Industria; ArgentinaFil: Torres, Pablo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Valencia Pabon, Mario. Universite de Paris 13-Nord; Francia. Centre National de la Recherche Scientifique; Franci

    The rotation distance of brooms

    Full text link
    The associahedron A(G)\mathcal{A}(G) of a graph GG has the property that its vertices can be thought of as the search trees on GG and its edges as the rotations between two search trees. If GG is a simple path, then A(G)\mathcal{A}(G) is the usual associahedron and the search trees on GG are binary search trees. Computing distances in the graph of A(G)\mathcal{A}(G), or equivalently, the rotation distance between two binary search trees, is a major open problem. Here, we consider the different case when GG is a complete split graph. In that case, A(G)\mathcal{A}(G) interpolates between the stellohedron and the permutohedron, and all the search trees on GG are brooms. We show that the rotation distance between any two such brooms and therefore the distance between any two vertices in the graph of the associahedron of GG can be computed in quasi-quadratic time in the number of vertices of GG.Comment: 26 pages, 3 figure

    Exact distance Kneser graphs

    Full text link
    For any graph G=(V,E)G = (V,E) and positive integer dd, the exact distance-dd graph G=dG_{=d} is the graph with vertex set VV, where two vertices are adjacent if and only if the distance between them in GG is dd. We study the exact distance-dd Kneser graphs. For these graphs, we characterize the adjacency of vertices in terms of the cardinality of the intersection between them. We present formulas describing the distance between any pair of vertices and we compute the diameter of these graphs

    On the diameter of Schrijver graphs

    Get PDF
    For k ≥ 1 and n ≥ 2k, the well known Kneser graph KG(n, k) has all k-element subsets of an n-element set as vertices; two such subsets are adjacent if they are disjoint. Schrijver constructed a vertex-critical subgraph SG(n, k) of KG(n, k) with the same chromatic number. In this paper, we compute the diameter of the graph SG(2k + r,k) with r ≥ 1. We obtain that the diameter of SG(2k + r, k) is equal to 2 if r ≥ 2k - 2; 3 if k≥ - 2 ≤ r ≤ 2k - 3; k if r = 1; and for 2 ≤ r ≤ k - 3, we obtain that the diameter of SG(2k + r, k) is at most equal to k - r + 1.Fil: Pastine, Adrián Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Torres, Pablo Daniel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Valencia Pabon, Mario. Universite Sorbonne Paris Nord; FranciaXI Latin and American Algorithms, Graphs and Optimization Symposium.Sao PauloBrasilUniversity of Sao Paul

    The permutation-path coloring problem on trees

    Get PDF
    AbstractIn this paper we first show that the permutation-path coloring problem is NP-hard even for very restrictive instances like involutions, which are permutations that contain only cycles of length at most two, on both binary trees and on trees having only two vertices with degree greater than two, and for circular permutations, which are permutations that contain exactly one cycle, on trees with maximum degree greater than or equal to 4. We calculate a lower bound on the average complexity of the permutation-path coloring problem on arbitrary networks. Then we give combinatorial and asymptotic results for the permutation-path coloring problem on linear networks in order to show that the average number of colors needed to color any permutation on a linear network on n vertices is n/4+o(n). We extend these results and obtain an upper bound on the average complexity of the permutation-path coloring problem on arbitrary trees, obtaining exact results in the case of generalized star trees. Finally we explain how to extend these results for the involutions-path coloring problem on arbitrary trees

    A one-to-one correspondence between potential solutions of the cluster deletion problem and the minimum sum coloring problem, and its application to P 4 -sparse graphs

    Get PDF
    In this note we show a one-to-one correspondence between potentially optimal solutions to the cluster deletion problem in a graph G and potentially optimal solutions for the minimum sum coloring problem in G (i.e. the complement graph of G). We apply this correspondence to polynomially solve the cluster deletion problem in a subclass of P 4 -sparse graphs that strictly includes P 4 -reducible graphs
    corecore