294 research outputs found

    Biomarkers: a strategic tool in the assessment of environmental quality of coastal waters

    Get PDF
    Ecosystems are under the pressure of complex mixtures of contaminants whose effects are not always simple to assess. Biomarkers, acting as early warning signals of the presence of potentially toxic xenobiotics, are useful tools for assessing either exposure to, or the effects of these compounds providing information about the toxicant bioavailability. In fact, it has been argued that a full understanding of ecotoxicological processes must consider an integrated multi-level approach, in which molecular impact is related with higher-order biological consequences at the individual, population and community levels. Monitoring programs should make use of this tool to link contaminants and ecological responses fulfilling strategies like those launched by OSPAR (Commissions of Oslo and Paris) Convention on the protection of the marine environment of the North-East Atlantic and the International Council for the Exploration of the Sea (ICES). An overview of the work done in the past few years using biomarkers as in situ tools for pollution assessment in Portuguese coastal waters is presented as a contribution to the set up of a biomonitoring program for the Portuguese coastal zone. Considering the data set available the biomonitoring proposal should include the analysis of biomarkers and effects at individual levels. The aim of the program will include a spatial and temporal characterization of the biomarkers acetyl-cholinesterase, metallothioneins, DNA damage, adenylate energy charge and scope-for-growth levels. The investigation of the spatial variation of biomarkers is crucial to define sites for long term monitoring, which will be integrated with a chemical monitoring program. This framework will be a major contribution to the implementation of a national database for the use of biomarkers along the Portuguese coast.info:eu-repo/semantics/publishedVersio

    Gas to liquid mass transfer in rheologically complex fluids

    Get PDF
    The increase of studies relaying on gas to liquid mass transfer in digested sludge (shear thinning fluid) necessitates a better understanding of the impact of apparent viscosity (μa) and rheology in process performance. Mass transfer retardation due to μa variations was investigated in a pilot scale absorption bubble column for Newtonian and shear thinning fluids with varied superficial gas velocities (UG). A non-linear reduction of mass transfer efficiency with increasing μa was observed, being the impact higher at low μa ranges and high UG. An increase of 114 cPo in μ from 1.01 to 115 cPo in glycerol solutions saturated with UG = 1.73 cm s−1 led to a reduction of 96% in kLa (α = 0.04), while a comparable raise from 115 to 229 cPo implied a reduction of 52% (α = 0.02). Slug–annular flow regime was identified for shear thinning fluids of high μa (1.0% and 1.5% carboxymethyl cellulose sodium salt solutions), where bubble buoyancy was conditioned by the μ of the fluid at rest and the active volume for mass transfer was reduced because of the presence of stagnant areas. Conditions imitating the rheological variability of anaerobically digested sewage sludge were included within those tested, being a reduction in gas transfer efficiency of 6 percentage points (from 7.6 ± 0.3% to 1.6 ± 0.1%) recorded when increasing μa from 130 to 340 cPo. It is thus recommended that rheology and μa variability are accounted for within the design of gas to liquid mass transfer systems involving digested sewage sludge, in order to avoid reductions in process performance and active volume

    Diversity of plant growth-promoting bacteria associated with sugarcane

    Get PDF
    The sugarcane (Saccharum spp) presents economic importance, mainly for tropical regions, being an important Brazilian commodity. However, this crop is strongly dependent on fertilizers, mainly nitrogen (N). This study assessed the plant growth-promoting bacteria (PGPB) associated with sugarcane that could be used as a potential inoculant to the crop. We evaluated the genetic diversity of PGPB in the plant tissue of sugarcane varieties (RB 867515, RB 1011, and RB 92579). The primer BOX-A1R was used to differentiate the similar isolated and further sequencing 16S rRNA ribosomal gene. The 16S rRNA gene showed the presence of seven different genera distributed into four groups, the genus Bacillus, followed by Paenibacillus (20%), Burkholderia (14%), Herbaspirillum (6%), Pseudomonas (6%), Methylobacterium (6%), and Brevibacillus (3%). The molecular characterization of endophytic isolates from sugarcane revealed a diversity of bacteria colonizing this plant, with a possible biotechnological potential to be used as inoculant and biofertilizers

    Erratum: Moreira, J., et al., Spin-Coated Polysaccharide-Based Multilayered Freestanding Films with Adhesive and Bioactive Moieties. Molecules 2020, 25, 840

    Get PDF
    Erratum: Moreira, J., et al., Spin-Coated Polysaccharide-Based Multilayered Freestanding Films with Adhesive and Bioactive Moieties. Molecules 2020, 25, 840. DOI: 10.3390/molecules25040840The authors wish to make changes to the published paper 11 j. 1. UV-Vis Analysis of Catechol-Modified Polymers In the original manuscript theie is a mistake concerning the word "Wavenumber" in the X-Coordinate in Figure 1. Tile corrected word is "Wavelength". Tlx- A uthors also wish to change mg«mL-l to mg ml-1 in the legend of Figure l;see corrected Figure 1 below. (Figure Presented).(undefined

    Polycaprolactone microcapsules containing citric acid and naringin for plant growth and sustainable agriculture: physico-chemical properties and release behavior

    Get PDF
    Plant growth promoting rhizobacteria (PGPR) is an alternative to chemical fertilizers for sustainable, environment friendly agriculture. There is a need to develop strategies to potentiate the interaction between rhizobacteria and plants. Flavonoids and organic acids (components of root exudates) play specific beneficial roles as carbon sources and signal molecules in the plant – rhizobacteria interactions. The goal of this work is to encapsulate signal molecules, namely citric acid and naringin, an organic acid and a flavonoid, respectively, by a biodegradable polymer, polycaprolactone (PCL), in order to maintain the stability and activity of those signal molecules and enable their slow or controlled release over a selected period of time, according to the needs of the plants. This approach is expected to potentiate food crops, namely peanut crop, in adverse environmental conditions (water deficit), by promoting the beneficial interaction between the peanut plant (A. hypogaea) and rhizobacteria. The microcapsules (MCs) are obtained by an emulsion process combined with solvent evaporation technique and are characterized by scanning electron microscopy, thermogravimetry and Fourier transformed infrared spectroscopy. The kinetics of in vitro release of encapsulated molecules, in a period where the uptake of the compound in plants can occur, is studied. The encapsulation synthesis parameters that lead to the bestFil: Cesari, Adriana Belen. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; ArgentinaFil: Loureiro, Mónica V.. Universidade Nova de Lisboa; PortugalFil: Vale, Mário. Universidade Nova de Lisboa; PortugalFil: Yslas, Edith Inés. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Dardanelli, Marta Susana. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; ArgentinaFil: Marques, Ana C.. Universidade Nova de Lisboa; Portuga

    Engineering ligament scaffolds based on PLA/graphite nanoplatelet composites by 3D printing or braiding

    Get PDF
    The development of scaffolds for tissue-engineered growth of the anterior cruciate ligament (ACL) is a promising approach to overcome the limitations of current solutions. This work proposes novel biodegradable and biocompatible scaffolds matching the mechanical characteristics of the native human ligament. Poly(L-lactic acid) (PLA) scaffolds reinforced with graphite nano-platelets (PLA+EG) as received, chemically functionalized (PLA+f-EG), or functionalized and decorated with silver nanoparticles [PLA+((f-EG)+Ag)], were fabricated by conventional braiding and using 3D-printing technology. The dimensions of both braided and 3D-printed scaffolds were finely controlled. The results showed that the scaffolds exhibited high porosity (>60%), pore interconnectivity, and pore size suitable for ligament tissue ingrowth, with no relevant differences between PLA and composite scaffolds. The wet state dynamic mechanical analysis at 37 °C revealed an increase in the storage modulus of the composite constructs, compared to neat PLA scaffolds. Either braided or 3D-printed scaffolds presented storage modulus values similar to those found in soft tissues. The tailorable design of the braided structures, as well as the reproducibility, the high speed, and the simplicity of 3D-printing allowed to obtain two different scaffolds suitable for ligament tissue engineering.This research was funded by FCT through the National Funds Reference UIDB/05256/2020 and UIDP/05256/2020, the FCT and European Program FEDER/COMPETE through the project PTDC/BTM-MAT/28123/2017, and the FCT, European Union and European Social Fund (FSE) through the PhD Grant Reference SFRH/BD/138244/2018

    Hypoglycemic and anti-lipemic effects of the aqueous extract from Cissus sicyoides

    Get PDF
    BACKGROUND: Cissus sicyoides (Vitaceae) is a medicinal plant popularly known in Brazil as "cipó-pucá, anil-trepador, cortina, and insulina". The plant is used in several diseases, including rheumatism, epilepsy, stroke and also in the treatment of diabetes. In the present work, we studied the hypoglycemic and anti-lipemic effects of the aqueous extract prepared from fresh leaves of the plant (AECS), in the model of alloxan-induced diabetes in rats. In addition, hepatic enzyme levels were also determined. RESULTS: Results showed that the daily treatment of diabetic rats with AECS for 7 days (100 and 200 mg/kg, p.o.) significantly decreased blood glucose levels in 25 and 22% respectively, as compared to the same groups before AECS treatment. No significant changes were seen in control diabetic rats before (48 h after alloxan administration) and after distilled water treatment. While no changes were seen in total cholesterol levels, a significant decrease was observed in plasma triglyceride levels, in the alloxan-induced diabetic rats after AECS treatment with both doses, as compared to the same groups before treatment. Significant decreases in blood glucose (25%) and triglyceride levels (48%) were also observed in the alloxan-induced diabetic rats after 4 days treatment with AECS (200 mg/kg, p.o.). Aspartate (AST) and alanine (ALT) aminotransferases levels, in diabetic controls and AECS-treated rats, were in the range of reference values presented by normal rats. CONCLUSIONS: The results justify the popular use of C. sicyoides, pointing out to the potential benefit of the plant aqueous extract (AECS) in alternative medicine, in the treatment of type 2 diabetes mellitus

    Ability of Different Measures of Adiposity to Identify High Metabolic Risk in Adolescents

    Get PDF
    Introduction. This study aimed to evaluate the screening performance of different measures of adiposity: body mass index (BMI), waist circumference (WC), and waist-to-height ratio (WHtR) for high metabolic risk in a sample of adolescents. Methods. A cross-sectional school-based study was conducted on 517 adolescents aged 15–18, from the Azorean Islands, Portugal. We measured fasting glucose, insulin, total cholesterol (TC), HDL-cholesterol, triglycerides, and systolic blood pressure. HOMA and TC/HDL-C ratio were calculated. For each of these variables, a Z-score was computed by age and sex. A metabolic risk score (MRS) was constructed by summing the Z-scores of all individual risk factors. High risk was considered when the individual had ≥1SD of this score. Receiver-operating characteristics (ROC) were used. Results. Linear regression analyses showed that, after adjusting for age and pubertal stage, all different measures of adiposity are positively and significantly associated with MRS in both sexes, with exception of WHtR for boys. BMI, WC, and WHtR performed well in detecting high MRS, indicated by areas under the curve (AUC), with slightly greater AUC for BMI than for WC and WHtR in both sexes. Conclusion. All measures of adiposity were significantly associated with metabolic risk factors in a sample of Portuguese adolescents
    corecore