47 research outputs found

    Non-alcoholic fatty liver disease (NAFLD) as a neglected metabolic companion of psychiatric disorders: common pathways and future approaches

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis in over 5% of the parenchyma in the absence of excessive alcohol consumption. It is more prevalent in patients with diverse mental disorders, being part of the comorbidity driving loss of life expectancy and quality of life, yet remains a neglected entity. NAFLD can progress to non-alcoholic steatohepatitis (NASH) and increases the risk for cirrhosis and hepatic carcinoma. Both NAFLD and mental disorders share pathophysiological pathways, and also present a complex, bidirectional relationship with the metabolic syndrome (MetS) and related cardiometabolic diseases. Main text: This review compares the demographic data on NAFLD and NASH among the global population and the psychiatric population, finding differences that suggest a higher incidence of this disease among the latter. It also analyzes the link between NAFLD and psychiatric disorders, looking into common pathophysiological pathways, such as metabolic, genetic, and lifestyle factors. Finally, possible treatments, tailored approaches, and future research directions are suggested. Conclusion: NAFLD is part of a complex system of mental and non-communicable somatic disorders with a common pathogenesis, based on shared lifestyle and environmental risks, mediated by dysregulation of inflammation, oxidative stress pathways, and mitochondrial function. The recognition of the prevalent comorbidity between NAFLD and mental disorders is required to inform clinical practice and develop novel interventions to prevent and treat these complex and interacting disorders

    Associations between level and change in physical function and brain volumes

    Get PDF
    Higher levels of fitness or physical function are positively associated with cognitive outcomes but the potential underlying mechanisms via brain structure are still to be elucidated in detail. We examined associations between brain structure and physical function (contemporaneous and change over the previous three years) in community-dwelling older adults.Participants from the Lothian Birth Cohort 1936 (N=694) underwent brain MRI at age 73 years to assess intracranial volume, and the volumes of total brain tissue, ventricles, grey matter, normal-appearing white matter, and white matter lesions. At ages 70 and 73, physical function was assessed by 6-meter walk, grip strength, and forced expiratory volume. A summary 'physical function factor' was derived from the individual measures using principal components analysis. Performance on each individual physical function measure declined across the three year interval (p<0.001). Higher level of physical function at ages 70 and 73 was associated with larger total brain tissue and white matter volumes, and smaller ventricular and white matter lesion volumes (standardized ÎČ ranged in magnitude from 0.07 to 0.17, p<0.001 to 0.034). Decline in physical function from age 70 to 73 was associated with smaller white matter volume (0.08, p<0.01, though not after correction for multiple testing), but not with any other brain volumetric measurements.Physical function was related to brain volumes in community-dwelling older adults: declining physical function was associated with less white matter tissue. Further study is required to explore the detailed mechanisms through which physical function might influence brain structure, and vice versa

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Risk and protective factors for structural brain ageing in the eighth decade of life

    Get PDF
    Individuals differ markedly in brain structure, and in how this structure degenerates during ageing. In a large sample of human participants (baseline n = 731 at age 73 years; follow-up n = 488 at age 76 years), we estimated the magnitude of mean change and variability in changes in MRI measures of brain macrostructure (grey matter, white matter, and white matter hyperintensity volumes) and microstructure (fractional anisotropy and mean diffusivity from diffusion tensor MRI). All indices showed significant average change with age, with considerable heterogeneity in those changes. We then tested eleven socioeconomic, physical, health, cognitive, allostatic (inflammatory and metabolic), and genetic variables for their value in predicting these differences in changes. Many of these variables were significantly correlated with baseline brain structure, but few could account for significant portions of the heterogeneity in subsequent brain change. Physical fitness was an exception, being correlated both with brain level and changes. The results suggest that only a subset of correlates of brain structure are also predictive of differences in brain ageing

    The effect of exposure to nanoparticles and nanomaterials on the mammalian epigenome

    No full text
    MI Sierra,1 A Vald&eacute;s,2 AF Fern&aacute;ndez,1 R Torrecillas,2 MF Fraga2 1Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo, 2Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, El&nbsp;Entrego, Spain Abstract: Human exposure to nanomaterials and nanoparticles is increasing rapidly, but their effects on human health are still largely unknown. Epigenetic modifications are attracting ever more interest as possible underlying molecular mechanisms of gene&ndash;environment interactions, highlighting them as potential molecular targets following exposure to nanomaterials and nanoparticles. Interestingly, recent research has identified changes in DNA methylation, histone post-translational modifications, and noncoding RNAs in mammalian cells exposed to nanomaterials and nanoparticles. However, the challenge for the future will be to determine the molecular pathways driving these epigenetic alterations, the possible functional consequences, and the potential effects on health. Keywords: noncoding RNAs, ncRNAs, DNA methylation, histone modification, epigenetic
    corecore