9 research outputs found
A membrane bioreactor for biotransformations to synthesise hydrophobic chiral molecules using organic solvent nanofiltration membranes
Imperial Users onl
A membrane bioreactor for biotransformations of hydrophobic molecules using organic solvent nanofiltration (OSN) membranes
Thiswork reports the application of organic solvent nanofiltration (OSN) membranes to a membrane bioreactor for biotransformations (MBB). An organic solvent phasewas employed, allowing high substrate loadings and efficient product removal. The aqueous and organic phases were separated by an OSN membrane. The biotransformation of geraniol to R-citronellol by baker’s yeast was used as the model reaction, and n-hexadecane and
toluene as the organic solvents. The performance of the MBB was compared to that of a direct contact biphasic (DCB) bioreactor. The MBB system resulted in lower productivities than the DCB system due to mass transfer limitations. For the n-hexadecane system, the membrane was the main mass transfer resistance, whereas for the toluene system the contribution of the aqueous liquid film mass transfer resistance became predominant. Further investigations are needed to improve the substrate transfer rates. Despite this, the MBB system prevented aqueous breakthrough, and
thus the formation of two-phase emulsions. Toluene toxicity to the biocatalyst was also minimized, although it caused a reduction in the reaction enantiospecificity. This work showed that OSN-MBB systems avoid the formation of emulsions, thus reducing downstream separation and allowing increased substrate loadings
A Semi-Continuous Fermentation Process for Pulque Production Using Microfiltration-Sterilized Aguamiel and Aseptic Conditions to Standardize the Overall Quality of the Beverage
Despite the current appreciation of pulque as a probiotic fermented beverage, pulque has been also regarded as a poor-quality product, particularly due to the lack of sanitary control during its elaboration. To address this problem, a semi-continuous fermentation system was established, emulating the artisanal production process. Microfiltration-sterilized aguamiel was employed as the substrate, whereas a good-quality pulque was used as the fermentation inoculum. During the fermentation, the physicochemical, microbiological (lactic acid and Leuconostoc-type bacteria and yeasts) and sensory characteristics of the must were monitored. The isolated microorganisms were identified by molecular biology and MALDI-MS techniques. The sterilization of aguamiel by microfiltration did not negatively affect its physicochemical attributes. After 6–8 days of operation of the semi-continuous bioreactor, the fermentation reached a quasi-stationary state considering most of the parameters monitored during the experiment. The final fermentation product presented similar physicochemical, microbial and sensory properties to those of the pulque inoculum. The genera identified were Leuconostoc, Lentilactobacillus, Lactobacillus, Liquorilactobacillus, Fructilactobacillus and Saccharomyces. The strains Lentilactobacillus diolivorans and Liquorilactobacillus capillatus and uvarum have not been previously isolated from pulque. In conclusion, the fermentation system developed in this work was effective to standardize the quality of pulque while preserving the positive attributes of the artisanal process, thus harnessing the probiotic properties of pulque
Table_1_Probiotic and functional potential of lactic acid bacteria isolated from pulque and evaluation of their safety for food applications.pdf
Pulque is a traditional Mexican non-distilled alcoholic beverage to which several beneficial functions are attributed, mainly associated with gastrointestinal health, which can be explained by the presence of probiotic bacteria in its microbiota. Therefore, the objective of this work was to evaluate the safety, probiotic activity, and functional characteristics of seven strains of lactic acid bacteria (LAB) isolated from pulque using the probiotic strain Lactobacillus acidophilus NCFM as control. The LAB isolates were identified by 16S rRNA sequencing and MALDI Biotyper® MS as belonging to three different Lactobacillaceae genera and species: Lactiplantibacillus plantarum, Levilactobacillus brevis and Lacticaseibacillus paracasei. Most strains showed resistance to gastric juice, intestinal juice and lysozyme (10 mg/L). In addition, all strains exhibited bile salt hydrolase (BSH) activity and antibacterial activity against the pathogenic strain Listeria monocytogenes. Additionally, cell surface characteristics of LAB were evaluated, with most strains showing good hydrophobicity, auto-aggregation, and co-aggregation towards enteropathogenic Escherichia coli and L. monocytogenes. In terms of safety, most of the strains were sensitive to the tested antibiotics and only the Lact. paracasei UTMB4 strain amplified a gene related to antibiotic resistance (mecA). The strains Lact. plantarum RVG2 and Lact. plantarum UTMB1 presented γ-hemolytic activity, and the presence of the virulence-related gene agg was identified only in UTMB1 strain. Regarding functional characterization, the tested bacteria showed good β-galactosidase activity, antioxidant activity and cholesterol reduction Based on principal component analysis (PCA) and heat mapping, and considering the strain Lact. acidophilus NCFM as the probiotic reference, the strains Lacticaseibacillus paracasei UTMB4, Lactiplantibacillus plantarum RVG4 and Levilactobacillus brevis UTMB2 were selected as the most promising probiotic strains. The results of this study highlighted the probiotic, functional and safety traits of LAB strains isolated from pulque thus supporting the health benefits attributed to this ancestral beverage.</p
Table_2_Probiotic and functional potential of lactic acid bacteria isolated from pulque and evaluation of their safety for food applications.pdf
Pulque is a traditional Mexican non-distilled alcoholic beverage to which several beneficial functions are attributed, mainly associated with gastrointestinal health, which can be explained by the presence of probiotic bacteria in its microbiota. Therefore, the objective of this work was to evaluate the safety, probiotic activity, and functional characteristics of seven strains of lactic acid bacteria (LAB) isolated from pulque using the probiotic strain Lactobacillus acidophilus NCFM as control. The LAB isolates were identified by 16S rRNA sequencing and MALDI Biotyper® MS as belonging to three different Lactobacillaceae genera and species: Lactiplantibacillus plantarum, Levilactobacillus brevis and Lacticaseibacillus paracasei. Most strains showed resistance to gastric juice, intestinal juice and lysozyme (10 mg/L). In addition, all strains exhibited bile salt hydrolase (BSH) activity and antibacterial activity against the pathogenic strain Listeria monocytogenes. Additionally, cell surface characteristics of LAB were evaluated, with most strains showing good hydrophobicity, auto-aggregation, and co-aggregation towards enteropathogenic Escherichia coli and L. monocytogenes. In terms of safety, most of the strains were sensitive to the tested antibiotics and only the Lact. paracasei UTMB4 strain amplified a gene related to antibiotic resistance (mecA). The strains Lact. plantarum RVG2 and Lact. plantarum UTMB1 presented γ-hemolytic activity, and the presence of the virulence-related gene agg was identified only in UTMB1 strain. Regarding functional characterization, the tested bacteria showed good β-galactosidase activity, antioxidant activity and cholesterol reduction Based on principal component analysis (PCA) and heat mapping, and considering the strain Lact. acidophilus NCFM as the probiotic reference, the strains Lacticaseibacillus paracasei UTMB4, Lactiplantibacillus plantarum RVG4 and Levilactobacillus brevis UTMB2 were selected as the most promising probiotic strains. The results of this study highlighted the probiotic, functional and safety traits of LAB strains isolated from pulque thus supporting the health benefits attributed to this ancestral beverage.</p
Kinetic Studies on Delignification and Heavy Metals Uptake by Shiitake (<i>Lentinula edodes</i>) Mushroom Cultivated on Agro-Industrial Wastes
This study investigates the sustainable production of Shiitake (Lentinula edodes) mushroom using agro-industrial wastes. The substrate of Shiitake (80% rice straw + 20% sugar cane bagasse) was moistened with 0 (freshwater as control), 50, and 100% concentrations of secondarily treated dairy plant and sugar mill wastewaters (DPW and SMW). After proper sterilization, the cultivation was carried out under controlled environmental conditions using the bag log method for 100 days. The results revealed that DPW and SMW moistening significantly (p < 0.05) increased the nutrient levels of the formulated substrate which later gave better mushroom yield. The highest Shiitake mycelial coverage (90.70 ± 1.47 and 88.65 ± 1.82%), yield (186.00 ± 3.10 and 176.09 ± 4.12 g/kg fresh substrate), biological efficiency (80.00 ± 0.58 and 75.73 ± 0.93%), total phenol (2.84 ± 0.03 and 2.69 ± 0.03 mg/g), ascorbic acid (0.34 ± 0.03 and 0.32 ± 0.02 mg/g), and β-carotene (2.48 ± 0.06 and 2.29 ± 0.02 μg/g) contents with the minimum time taken for spawn running (60 ± 1 days) was observed using a 50% concentration treatment of both DPW and SMW, respectively. Besides this, the kinetic studies using a first-order-based model showed acceptable accuracy in predicting the rate constant for substrate delignification and heavy metal uptake by Shiitake mushroom. These findings suggest a novel approach for sustainable mushroom cultivation using agro-industrial wastes. The concept can be used for the production of high-quality mushrooms for edible and medicinal purposes while contributing toward the United Nations’ Sustainable Development Goals (SDGs 12) on responsible consumption and production of superfoods
Combined Effect of the Potassium Dose and Plant Biofertilization by Acinetobacter calcoaceticus on the Growth, Mineral Content, Nutritional Quality, Antioxidant Activity, and Metabolomic Features of Tomatillo Fruits (Physalis ixocarpa Brot.)
An Acinetobacter calcoaceticus UTMR2 strain was evaluated in tomatillo plants (Physalis ixocarpa Brot.) using a factorial design with different potassium doses (100, 75, 50 and 0% of the recommended dose). In addition to the agronomic parameters, an analysis of the physicochemical, antioxidant, and metabolomic properties of the fruit was performed. The application of the inoculant affected several parameters of the plant (chlorophyll, weight, and contents of several mineral elements) as well as of the fruit (yield, maturity index, FRAP antioxidant capacity, and contents of protein, fiber, and fat). A multivariate analysis was performed by means of a PCA and a heatmap, indicating that the inoculant induced a strong modulating activity in tomatillo plants for the evaluated parameters, with a remarkable effect at low K doses (0 and 50%). The inoculated treatment at 75% of the K dose resulted in similar plant and fruit characteristics to the fully fertilized control. On the other hand, the biofertilized treatment with no K addition resulted in the highest values in the plant and fruit parameters. In addition, from the metabolomics analysis of the fruits at 75% of the K dose, the up-regulation of 4,4″-bis(N-feruloyl)serotonin, salvianolic acid K, and chlorogenic acid was observed, which may have a role in anti-senescence and resistance mechanisms. In conclusion, the rhizobacterial strain had a positive effect on plant growth, nutritional quality, bioactive compounds, and antioxidant activity of tomatillo fruits at reduced doses of K fertilizer, which gives support for its consideration as an effective biofertilizer strain