1,908 research outputs found

    Nonlocality as a Benchmark for Universal Quantum Computation in Ising Anyon Topological Quantum Computers

    Get PDF
    An obstacle affecting any proposal for a topological quantum computer based on Ising anyons is that quasiparticle braiding can only implement a finite (non-universal) set of quantum operations. The computational power of this restricted set of operations (often called stabilizer operations) has been studied in quantum information theory, and it is known that no quantum-computational advantage can be obtained without the help of an additional non-stabilizer operation. Similarly, a bipartite two-qubit system based on Ising anyons cannot exhibit non-locality (in the sense of violating a Bell inequality) when only topologically protected stabilizer operations are performed. To produce correlations that cannot be described by a local hidden variable model again requires the use of a non-stabilizer operation. Using geometric techniques, we relate the sets of operations that enable universal quantum computing (UQC) with those that enable violation of a Bell inequality. Motivated by the fact that non-stabilizer operations are expected to be highly imperfect, our aim is to provide a benchmark for identifying UQC-enabling operations that is both experimentally practical and conceptually simple. We show that any (noisy) single-qubit non-stabilizer operation that, together with perfect stabilizer operations, enables violation of the simplest two-qubit Bell inequality can also be used to enable UQC. This benchmarking requires finding the expectation values of two distinct Pauli measurements on each qubit of a bipartite system.Comment: 12 pages, 2 figure

    Topological Degeneracy and Vortex Manipulation in Kitaev's Honeycomb Model

    Get PDF
    The classification of loop symmetries in Kitaev's honeycomb lattice model provides a natural framework to study the Abelian topological degeneracy. We derive a perturbative low-energy effective Hamiltonian that is valid to all orders of the expansion and for all possible toroidal configurations. Using this form we demonstrate at what order the system's topological degeneracy is lifted by finite size effects and note that in the thermodynamic limit it is robust to all orders. Further, we demonstrate that the loop symmetries themselves correspond to the creation, propagation, and annihilation of fermions. We note that these fermions, made from pairs of vortices, can be moved with no additional energy cost

    Optimizing entangling quantum gates for physical systems

    Get PDF
    Optimal control theory is a versatile tool that presents a route to significantly improving figures of merit for quantum information tasks. We combine it here with the geometric theory for local equivalence classes of two-qubit operations to derive an optimization algorithm that determines the best entangling two-qubit gate for a given physical setting. We demonstrate the power of this approach for trapped polar molecules and neutral atoms.Comment: extended version; Phys. Rev. A (2011

    Immunohistochemistry studies on bovine squamous cell carcinoma morphological characterization of epidermal cell proliferation and differentiation markers and characterization of cytokeratins

    Get PDF
    Bovine Ocular Squamous Cell Carcinoma (OSCC) is a general designation for a group of primary neoplasias of keratinocytes arising from ocular tissues, especially the lids and particularly the third eye lid. OSCC has been diagnosed all over the world with high prevalence, being the most common bovine tumour and the one causing the most significant economic losses (Hamir & Parry, 1980; Dennis et al., 1985, Heeney & Valli, 1985; Wilcock, 1993). In Portugal, the frequency of these tumours is particularly high in the Azores, where in S. Miguel Island a large number of cattle affected with OSCC is rejected for consumption at slaughter. OSCC is the second most frequent neoplasia after urinary bladder tumours, representing 21% of all cases of rejection due to neoplasia (Pinto et al, 1996). Several reasons have been advanced to explain this situation namely the fact that animals stay in pasture all year around, with a prolonged exposition to day light and benefiting from few shelters. The ingestion of toxic plants present the pasture could also give rise to photosensitazation problems, either primary or due to hepatic toxicity, that could generate predisposing conditions to the development of OSCC

    Scalability of quantum computation with addressable optical lattices

    Get PDF
    We make a detailed analysis of error mechanisms, gate fidelity, and scalability of proposals for quantum computation with neutral atoms in addressable (large lattice constant) optical lattices. We have identified possible limits to the size of quantum computations, arising in 3D optical lattices from current limitations on the ability to perform single qubit gates in parallel and in 2D lattices from constraints on laser power. Our results suggest that 3D arrays as large as 100 x 100 x 100 sites (i.e., 106\sim 10^6 qubits) may be achievable, provided two-qubit gates can be performed with sufficiently high precision and degree of parallelizability. Parallelizability of long range interaction-based two-qubit gates is qualitatively compared to that of collisional gates. Different methods of performing single qubit gates are compared, and a lower bound of 1×1051 \times 10^{-5} is determined on the error rate for the error mechanisms affecting 133^{133}Cs in a blue-detuned lattice with Raman transition-based single qubit gates, given reasonable limits on experimental parameters.Comment: 17 pages, 5 figures. Accepted for publication in Physical Review

    Photoassociation of cold atoms with chirped laser pulses: time-dependent calculations and analysis of the adiabatic transfer within a two-state model

    Full text link
    This theoretical paper presents numerical calculations for photoassociation of ultracold cesium atoms with a chirped laser pulse and detailed analysis of the results. In contrast with earlier work, the initial state is represented by a stationary continuum wavefunction. In the chosen example, it is shown that an important population transfer is achieved to 15\approx 15 vibrational levels in the vicinity of the v=98 bound level in the external well of the 0g(6s+6p3/2)0_g^-(6s+6p_{3/2}) potential. Such levels lie in the energy range swept by the instantaneous frequency of the pulse, thus defining a ``photoassociation window''. Levels outside this window may be significantly excited during the pulse, but no population remains there after the pulse. Finally, the population transfer to the last vibrational levels of the ground a3Σu+a^3\Sigma_u^+(6s + 6s) is significant, making stable molecules. The results are interpreted in the framework of a two state model as an adiabatic inversion mechanism, efficient only within the photoassociation window. The large value found for the photoassociation rate suggests promising applications. The present chirp has been designed in view of creating a vibrational wavepacket in the excited state which is focussing at the barrier of the double well potential.Comment: 49 pages, 9 figures, submitted to Phys. Rev.

    Paratuberculosis in Sheep from Serra da Estrela Region

    Get PDF
    Being Paratuberculosis a chronic disease of difficult diagnosis and having suspicious of her presence in Serra da Estrela ovine’s effectives, it’s essential to prove this fact and establish a fast, efficient and viable diagnosis protocol, to be able to identified flock’s carriers of disease cases and, subsequently, being developed an eradication plane that allows her control. Therefore, in this work were tested several diagnosis’ methods but this report reflects mostly on the histopatological diagnosis’ methods, including the general condition observation before necropsy elaboration, necropsy, histopathological exam and Ziehl-Neelsen’s stain method, as well as Immunohistochemical`s method. A analogy with serological diagnosis was made. Of the 46 animals sent to necropsy, 20 showed positive reaction to ELISA (enzyme linked immunosorbent assay), 2 doubtful reaction and 21 were negative. The AGID was only positive in 4 animals. The symptoms were compatible in 34 animals. The macroscopic’s exam was compatible in 40 animals. The histopathology was compatible in 26 animals. The Ziehl-Neelsen’s stain of tissues revealed acid fast bacterias in 20 animals. In Immunohistochemical method 20 animals were positives

    A geometric theory of non-local two-qubit operations

    Get PDF
    We study non-local two-qubit operations from a geometric perspective. By applying a Cartan decomposition to su(4), we find that the geometric structure of non-local gates is a 3-Torus. We derive the invariants for local transformations, and connect these local invariants to the coordinates of the 3-Torus. Since different points on the 3-Torus may correspond to the same local equivalence class, we use the Weyl group theory to reduce the symmetry. We show that the local equivalence classes of two-qubit gates are in one-to-one correspondence with the points in a tetrahedron except on the base. We then study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some initially separable states. We provide criteria to determine whether a given two-qubit gate is a perfect entangler and establish a geometric description of perfect entanglers by making use of the tetrahedral representation of non-local gates. We find that exactly half the non-local gates are perfect entanglers. We also investigate the non-local operations generated by a given Hamiltonian. We first study the gates that can be directly generated by a Hamiltonian. Then we explicitly construct a quantum circuit that contains at most three non-local gates generated by a two-body interaction Hamiltonian, together with at most four local gates generated by single qubit terms. We prove that such a quantum circuit can simulate any arbitrary two-qubit gate exactly, and hence it provides an efficient implementation of universal quantum computation and simulation.Comment: 22 pages, 6 figure

    Optimal control theory for unitary transformations

    Full text link
    The dynamics of a quantum system driven by an external field is well described by a unitary transformation generated by a time dependent Hamiltonian. The inverse problem of finding the field that generates a specific unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal control theory (OCT) is used to solve the inversion problem irrespective of the initial input state. A unified formalism, based on the Krotov method is developed leading to a new scheme. The schemes are compared for the inversion of a two-qubit Fourier transform using as registers the vibrational levels of the X1Σg+X^1\Sigma^+_g electronic state of Na2_2. Raman-like transitions through the A1Σu+A^1\Sigma^+_u electronic state induce the transitions. Light fields are found that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by pulse-shaping techniques of a femtosecond pulse. Out of the schemes studied the square modulus scheme converges fastest. A study of the implementation of the QQ qubit Fourier transform in the Na2_2 molecule was carried out for up to 5 qubits. The classical computation effort required to obtain the algorithm with a given fidelity is estimated to scale exponentially with the number of levels. The observed moderate scaling of the pulse intensity with the number of qubits in the transformation is rationalized.Comment: 32 pages, 6 figure

    Encoded Universality for Generalized Anisotropic Exchange Hamiltonians

    Get PDF
    We derive an encoded universality representation for a generalized anisotropic exchange Hamiltonian that contains cross-product terms in addition to the usual two-particle exchange terms. The recently developed algebraic approach is used to show that the minimal universality-generating encodings of one logical qubit are based on three physical qubits. We show how to generate both single- and two-qubit operations on the logical qubits, using suitably timed conjugating operations derived from analysis of the commutator algebra. The timing of the operations is seen to be crucial in allowing simplification of the gate sequences for the generalized Hamiltonian to forms similar to that derived previously for the symmetric (XY) anisotropic exchange Hamiltonian. The total number of operations needed for a controlled-Z gate up to local transformations is five. A scalable architecture is proposed.Comment: 11 pages, 4 figure
    corecore