8 research outputs found

    A Missense Mutation in PPP1R15B Causes a Syndrome Including Diabetes, Short Stature, and Microcephaly.

    Get PDF
    Dysregulated endoplasmic reticulum stress and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) are associated with pancreatic β-cell failure and diabetes. Here, we report the first homozygous mutation in the PPP1R15B gene (also known as constitutive repressor of eIF2α phosphorylation [CReP]) encoding the regulatory subunit of an eIF2α-specific phosphatase in two siblings affected by a novel syndrome of diabetes of youth with short stature, intellectual disability, and microcephaly. The R658C mutation in PPP1R15B affects a conserved amino acid within the domain important for protein phosphatase 1 (PP1) binding. The R658C mutation decreases PP1 binding and eIF2α dephosphorylation and results in β-cell apoptosis. Our findings support the concept that dysregulated eIF2α phosphorylation, whether decreased by mutation of the kinase (EIF2AK3) in Wolcott-Rallison syndrome or increased by mutation of the phosphatase (PPP1R15B), is deleterious to β-cells and other secretory tissues, resulting in diabetes associated with multisystem abnormalities.This work was supported by the European Union 7th Framework Programme (project BetaBat), the Actions de Recherche Concertées de la Communauté Française, and Fonds National de la Recherche Scientifique (FNRS), Belgium, and by grants from the Agence Nationale pour la Recherche (ANR-09-GENO-021), the European Foundation for the Study of Diabetes/JDRF/Novo Nordisk, the Assistance Publique-Hôpitaux de Paris Programme Hospitalier de Recherche Clinique (DIAGENE), the GIS Maladies Rares, and the Wellcome Trust (084812/Z/08/Z). A.T.H. is a Wellcome Trust and National Institute for Health Research senior investigator, and D.R. is a Wellcome Trust Principal Research Fellow. B.A. was supported by an European Molecular Biology Organization Short-Term Fellowship and an FNRS-FRIA fellowship. M.I.-E. is a scientific collaborator of the FNRS. M.D. was supported by a doctoral fellowship from the Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche, France.This is the author accepted manuscript. The final version is available from the American Diabetes Association via http://dx.doi.org/10.2337/db15-047

    DNAJC3 deficiency induces β-cell mitochondrial apoptosis and causes syndromic young-onset diabetes.

    No full text
    DNAJC3, also known as P58IPK, is an Hsp40 family member that interacts with and inhibits PKR-like ER-localized eIF2α kinase (PERK). Dnajc3 deficiency in mice causes pancreatic β-cell loss and diabetes. Loss-of-function mutations in DNAJC3 cause early-onset diabetes and multisystemic neurodegeneration. The aim of our study was to investigate the genetic cause of early-onset syndromic diabetes in two unrelated patients, and elucidate the mechanisms of β-cell failure in this syndrome.info:eu-repo/semantics/publishe

    Severe FOXP3+ and naive T lymphopenia in a non-IPEX form of autoimmune enteropathy combined with an immunodeficiency

    No full text
    BACKGROUND & AIMS: Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is the best-characterized form of a rare entity called autoimmune enteropathy (AIE). IPEX syndrome is due to mutations in the FOXP3 gene, a transcription factor essential for the development and function of the natural regulatory CD25(+)CD4(+) T cells. We studied a female patient with a polyautoimmune AIE syndrome resembling a mild form of IPEX syndrome but associated with recurrent bacterial infections and mild hypogammaglobulinemia. We hypothesized that this syndrome combined a deficit of FOXP3(+) cells and other lymphocyte populations. METHODS: We analyzed the major lymphocyte subsets and the FOXP3(+) regulatory system in blood samples obtained during the 2-year period that followed the last autoimmune manifestation. RESULTS: The patient had severe naive T lymphopenia and a major deficit of FOXP3(+)CD4(+) T cells, both in circulation and in the highly inflamed intestinal mucosa, but mutations in the FOXP3 locus were excluded. The blood FOXP3(+) pool was devoid of CD25(high) cells, but the few regulatory CD25(+) cells were functional. Intrinsic defects in the expression of CD25, FOXP3, and interleukin 2 were excluded. Upon activation, a small subset of cells, presumably committed to regulatory function, sustained expression of CD25 and FOXP3. CONCLUSIONS: Peripheral T lymphopenia of both naive and natural regulatory T cells might be the consequence of defective thymic production or the short life span of exported T cells. This case sheds new light in the etiology of autoimmune manifestations in T-cell immunodeficiencies and in the heterogeneity of AIE
    corecore