30 research outputs found

    FTR83, a member of the large fish-specific finTRIM family, triggers IFN pathway and counters viral infection

    Get PDF
    Publisher Copyright: © 2017 Langevin, Aleksejeva, Houel, Briolat, Torhy, Lunazzi, Levraud and Boudinot.Tripartite motif (TRIM) proteins are involved in various cellular functions and constitute key factors of the antiviral innate immune response. TRIM proteins can bind viral particles directly, sending them to degradation by the proteasome, or ubiquitinate signaling molecules leading to upregulation of innate immunity. TRIM proteins are present in across metazoans but are particularly numerous in vertebrates where genes comprising a B30.2 domain have been often duplicated. In fish, a TRIM subset named finTRIM is highly diversified, with large gene numbers and clear signatures of positive selection in the B30.2 domain suggesting they may be involved in antiviral mechanisms. finTRIM provides a beautiful model to investigate the primordial implication of B30.2 TRIM subsets in the arsenal of vertebrate antiviral defenses. We show here that ftr83, a zebrafish fintrim gene mainly expressed in the gills, skin and pharynx, encodes a protein affording a potent antiviral activity. In vitro, overexpression of FTR83, but not of its close relative FTR82, induced IFN and IFN-stimulated gene expression and afforded protection against different enveloped and non-enveloped RNA viruses. The kinetics of IFN induction paralleled the development of the antiviral activity, which was abolished by a dominant negative IRF3 mutant. In the context of a viral infection, FTR83 potentiated the IFN response. Expression of chimeric proteins in which the B30.2 domain of FTR83 and the non-protective FTR82 had been exchanged, showed that IFN upregulation and antiviral activity requires both the Ring/BBox/Coiled coil domain (supporting E3 ubiquitin ligase) and the B30.2 domain of FTR83. Finally, loss of function experiments in zebrafish embryos confirms that ftr83 mediates antiviral activity in vivo. Our results show that a member of the largest TRIM subset observed in fish upregulates type I IFN response and afford protection against viral infections, supporting that TRIMs are key antiviral factors across vertebrates.publishersversionPeer reviewe

    A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In mammals, the members of the tripartite motif (TRIM) protein family are involved in various cellular processes including innate immunity against viral infection. Viruses exert strong selective pressures on the defense system. Accordingly, antiviral TRIMs have diversified highly through gene expansion, positive selection and alternative splicing. Characterizing immune TRIMs in other vertebrates may enlighten their complex evolution.</p> <p>Results</p> <p>We describe here a large new subfamily of TRIMs in teleosts, called finTRIMs, identified in rainbow trout as virus-induced transcripts. FinTRIMs are formed of nearly identical RING/B-box regions and C-termini of variable length; the long variants include a B30.2 domain. The zebrafish genome harbors a striking diversity of finTRIMs, with 84 genes distributed in clusters on different chromosomes. A phylogenetic analysis revealed different subsets suggesting lineage-specific diversification events. Accordingly, the number of <it>fintrim </it>genes varies greatly among fish species. Conserved syntenies were observed only for the oldest <it>fintrims</it>. The closest mammalian relatives are <it>trim16 </it>and <it>trim25</it>, but they are not true orthologs. The B30.2 domain of zebrafish finTRIMs evolved under strong positive selection. The positions under positive selection are remarkably congruent in finTRIMs and in mammalian antiviral TRIM5α, concentrated within a viral recognition motif in mammals. The B30.2 domains most closely related to finTRIM are found among NOD-like receptors (NLR), indicating that the evolution of TRIMs and NLRs was intertwined by exon shuffling.</p> <p>Conclusion</p> <p>The diversity, evolution, and features of finTRIMs suggest an important role in fish innate immunity; this would make them the first TRIMs involved in immunity identified outside mammals.</p

    Whole-Body Analysis of a Viral Infection: Vascular Endothelium is a Primary Target of Infectious Hematopoietic Necrosis Virus in Zebrafish Larvae

    Get PDF
    The progression of viral infections is notoriously difficult to follow in whole organisms. The small, transparent zebrafish larva constitutes a valuable system to study how pathogens spread. We describe here the course of infection of zebrafish early larvae with a heat-adapted variant of the Infectious Hematopoietic Necrosis Virus (IHNV), a rhabdovirus that represents an important threat to the salmonid culture industry. When incubated at 24°C, a permissive temperature for virus replication, larvae infected by intravenous injection died within three to four days. Macroscopic signs of infection followed a highly predictable course, with a slowdown then arrest of blood flow despite continuing heartbeat, followed by a loss of reactivity to touch and ultimately by death. Using whole-mount in situ hybridization, patterns of infection were imaged in whole larvae. The first infected cells were detectable as early as 6 hours post infection, and a steady increase in infected cell number and staining intensity occurred with time. Venous endothelium appeared as a primary target of infection, as could be confirmed in fli1:GFP transgenic larvae by live imaging and immunohistochemistry. Disruption of the first vessels took place before arrest of blood circulation, and hemorrhages could be observed in various places. Our data suggest that infection spread from the damaged vessels to underlying tissue. By shifting infected fish to a temperature of 28°C that is non-permissive for viral propagation, it was possible to establish when virus-generated damage became irreversible. This stage was reached many hours before any detectable induction of the host response. Zebrafish larvae infected with IHNV constitute a vertebrate model of an hemorrhagic viral disease. This tractable system will allow the in vivo dissection of host-virus interactions at the whole organism scale, a feature unrivalled by other vertebrate models

    Origin and Evolution of TRIM Proteins: New Insights from the Complete TRIM Repertoire of Zebrafish and Pufferfish

    Get PDF
    Tripartite motif proteins (TRIM) constitute a large family of proteins containing a RING-Bbox-Coiled Coil motif followed by different C-terminal domains. Involved in ubiquitination, TRIM proteins participate in many cellular processes including antiviral immunity. The TRIM family is ancient and has been greatly diversified in vertebrates and especially in fish. We analyzed the complete sets of trim genes of the large zebrafish genome and of the compact pufferfish genome. Both contain three large multigene subsets - adding the hsl5/trim35-like genes (hltr) to the ftr and the btr that we previously described - all containing a B30.2 domain that evolved under positive selection. These subsets are conserved among teleosts. By contrast, most human trim genes of the other classes have only one or two orthologues in fish. Loss or gain of C-terminal exons generated proteins with different domain organizations; either by the deletion of the ancestral domain or, remarkably, by the acquisition of a new C-terminal domain. Our survey of fish trim genes in fish identifies subsets with different evolutionary dynamics. trims encoding RBCC-B30.2 proteins show the same evolutionary trends in fish and tetrapods: they evolve fast, often under positive selection, and they duplicate to create multigenic families. We could identify new combinations of domains, which epitomize how new trim classes appear by domain insertion or exon shuffling. Notably, we found that a cyclophilin-A domain replaces the B30.2 domain of a zebrafish fintrim gene, as reported in the macaque and owl monkey antiretroviral TRIM5α. Finally, trim genes encoding RBCC-B30.2 proteins are preferentially located in the vicinity of MHC or MHC gene paralogues, which suggests that such trim genes may have been part of the ancestral MHC

    Oxidative stress response in Clostridium perfringens

    No full text
    International audienceClostridium perfringens, a strictly anaerobic bacterium, is able to survive when exposed to oxygen for short periods of time and exhibits a complex adaptive response to reactive oxygen species, both under aerobic and anaerobic conditions. However, this adaptive response is not completely understood. C. perfringens possesses specialized genes that might be involved in this adaptive process, such as those encoding superoxide dismutase (SOD), superoxide reductase and alkyl hydroperoxide reductase, but their contribution to the oxidative stress response and their control mechanisms are unknown. By a combination of functional complementation of Escherichia coli strains impaired in either SOD, alkyl hydroperoxide reductase (AhpC) or catalase activity (Cat), transcription analysis and characterization of mutants impaired in regulatory genes, it was concluded that: (i) the product of the sod gene is certainly essential to scavenge superoxide radicals, (ii) the ahpC gene, which is fully induced in all oxidative stress conditions, is probably involved in the scavenging of all intracellular peroxides, (iii) the three rubrerythrin (rbr) genes of C. perfringens do not encode proteins with in vivo H(2)O(2) reductase activity, and (iv) the two rubredoxin (rub) genes do not contribute to the hypothetical superoxide reductase activity, but are likely to belong to an electron transfer chain involved in energy metabolism

    Growth Response of Clostridium perfringens to Oxidative Stress

    No full text
    International audienceThe sensitivity of Clostridium perfringens strain 13 to oxygen and its toxic derivatives was investigated in a new, defined medium (MMP). Exponentially growing cells in MMP medium were very sensitive to exposure to air by vigorous shaking. When exposed to air, the cells survived only 1hour and then rapidly died. Addition of cysteine, ascorbic acid, or yeast extract to the medium significantly increased vegetative cell survival without inducing sporulation. The level of toxicity of peroxyl and hydroperoxyl radicals, generated by H2O2, t-butyl hydroperoxide or ethanol, was very similar with and without air exposure. By contrast, plumbagin or menadione, which generate superoxide radicals in the presence of oxygen, caused high levels of cell death only in aerobiosic culture. Growth-arrested cells were more resistant to H2O2and to redox-cycling agents than were exponentially growing cells, but the resistance required de novo synthesis of proteins. An adaptive response to oxidative stress was also suggested by the higher level of cell resistance to H2O2and to ethanol when cells were pretreated with sublethal doses of these oxidants

    IFN-Stimulated Genes in Zebrafish and Humans Define an Ancient Arsenal of Antiviral Immunity

    No full text
    The sequences presented in this article have been submitted to BioProject National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/bioproject) under the Sequence Read Archive accession number PRJNA531581.International audienceThe evolution of the IFN system, the major innate antiviral mechanism of vertebrates, remains poorly understood. According to the detection of type I IFN genes in cartilaginous fish genomes, the system appeared 500 My ago. However, the IFN system integrates many other components, most of which are encoded by IFN-stimulated genes (ISGs). To shed light on its evolution, we have used deep RNA sequencing to generate a comprehensive list of ISGs of zebrafish, taking advantage of the high-quality genome annotation in this species. We analyzed larvae after inoculation of recombinant zebrafish type I IFN, or infection with chikungunya virus, a potent IFN inducer. We identified more than 400 zebrafish ISGs, defined as being either directly induced by IFN or induced by the virus in an IFNR-dependent manner. Their human orthologs were highly enriched in ISGs, particularly for highly inducible genes. We identified 72 orthology groups containing ISGs in both zebrafish and humans, revealing a core ancestral ISG repertoire that includes most of the known signaling components of the IFN system. Many downstream effectors were also already present 450 My ago in the common ancestor of tetrapods and bony fish and diversified as multigene families independently in the two lineages. A large proportion of the ISG repertoire is lineage specific; around 40% of protein-coding zebrafish ISGs had no human ortholog. We identified 14 fish-specific gene families containing multiple ISGs, including finTRIMs. This work illuminates the evolution of the IFN system and provides a rich resource to explore new antiviral mechanisms

    Interferon-stimulated genes in zebrafish and human define an ancient arsenal of antiviral immunity

    No full text
    Version 3 déposée sur BioRxiv le 19 septembre 2019 https://www.biorxiv.org/content/10.1101/693333v3The evolution of the interferon (IFN) system, the major innate antiviral mechanism of vertebrates, remains poorly understood. According to the detection of type I IFN genes in cartilaginous fish genomes, the system appeared 500My ago. However, the IFN system integrates many other components, most of which are encoded by IFN-stimulated genes (ISGs). To shed light on its evolution, we have used deep RNA sequencing to generate a comprehensive list of ISGs of zebrafish, taking advantage of the high quality genome annotation in this species. We analyzed larvae after inoculation of recombinant zebrafish type I IFN, or infection with chikungunya virus, a potent IFN inducer. We identified more than 400 zebrafish ISGs, defined as being either directly induced by IFN or induced by the virus in an IFN receptor-dependent manner. Their human orthologues were highly enriched in ISGs, particularly for highly-inducible genes. We identified 72 orthology groups containing ISGs in both zebrafish and human, revealing a core ancestral ISG repertoire, which includes most of the known signaling components of the IFN system. Many downstream effectors were also already present 450 My ago in the common ancestor of tetrapods and bony fish, and diversified as multi-gene families independently in the two lineages. A large proportion of the ISG repertoire is lineage-specific; around 40% of protein-coding zebrafish ISGs had no human orthologue. We identified 14 fish-specific gene families containing multiple ISGs, including finTRIMs. This work illuminates the evolution of the IFN system and provides a rich resource to explore new antiviral mechanisms

    How Did Institut Pasteur’s NGS Core Facility, Biomics, Manage the Coronavirus Disease 2019 Crisis?

    No full text
    International audienceIn 2020, research entities at the Institut Pasteur (IP) in Paris, as elsewhere around the world, were closed because of the coronavirus disease 2019 (COVID-19) pandemic. However, IP core facilities, laboratories, services, and departments working on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and priority projects were authorized to continue working both on site and remotely. Given the importance of its role in SARS-CoV-2 genome-sequencing initiatives, the IP Biomics core facility was fully functional during the first (i.e., March-June 2020) and second (i.e., November-December 2020) national lockdowns. We describe here how Biomics successfully implemented an emergency management plan to deal with this health crisis. We highlight the internal deployment of the institutional business continuity plan (BCP) through a series of actions. We also address the impact of the COVID-19 crisis on Biomics staff and collaborators. The added value of quality management and the limitations of risk management systems are discussed. Finally, we suggest that the Biomics infrastructure and the BCP described here could be used for benchmarking purposes, for other next-generation sequencing core facilities wishing to implement/improve their processes, and for future major crisis management
    corecore