11 research outputs found

    Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations

    Get PDF
    The benefits of implementing negative emission technologies in the global warming response to cumulative carbon emissions until the year 2420 are assessed following the shared socioeconomic pathway (SSP) 1-2.6, the sustainable development scenario, with a comprehensive set of intermediate-complexity Earth system model integrations. Model integrations include 86 different model realisations covering a wide range of plausible climate states. The global warming response is assessed in terms of two key climate metrics: the effective transient climate response to cumulative CO2 emissions (eTCRE), measuring the surface warming response to cumulative carbon emissions and associated non-CO2 forcing, and the effective zero emissions commitment (eZEC), measuring the extent of any continued warming after net-zero CO2 emissions are reached. The transient climate response to cumulative CO2 emissions (TCRE) is estimated as 2.2 K EgC−1 (median value) with a 10 %–90 % range of 1.75 to 3.13 K EgC−1 in 2100, approximated from the eTCRE by removing the contribution of non-CO2 forcing. During the positive emission phase, the eTCRE decreases from 2.71 (2.0 to 3.65) to 2.61 (1.91 to 3.62) K EgC−1 due to a weakening in the dependence of radiative forcing on atmospheric carbon, which is partly opposed by an increasing fraction of the radiative forcing warming the surface as the ocean stratifies. During the net negative and zero emission phases, a progressive reduction in the eTCRE to 2.0 (1.39 to 2.96) K EgC−1 is driven by the reducing airborne fraction as atmospheric CO2 is drawn down mainly by the ocean. The model uncertainty in the slopes of warming versus cumulative CO2 emissions varies from being controlled by the radiative feedback parameter during positive emissions to being affected by carbon-cycle parameters during net negative emissions, consistent with the drivers of uncertainty diagnosed from the coefficient of variation of the contributions in the eTCRE framework. The continued warming after CO2 emissions cease and remain at zero gives a model mean eZEC of −0.03 K after 25 years, which decreases in time to −0.21 K at 90 years after emissions cease. However, there is a spread in the ensemble with a temperature overshoot occurring in 20 % of the ensemble members at 25 years after cessation of emissions. If net negative emissions are included, there is a reduction in atmospheric CO2 and there is a decrease in temperature overshoot so that the eZEC is positive in only 5 % of the ensemble members. Hence, incorporating negative emissions enhances the ability to meet climate targets and avoid risk of continued warming after net zero is reached

    The role of water-energy nexus in optimising water supply systems – Review of techniques and approaches

    No full text
    Considering water-energy nexus in optimising water supply systems not only ensures the sustainability of the water supply for increasing water demand but also diminishes water-related energy and environmental concerns. This paper presents a review highlighting knowledge gaps in optimisation models related to the water-energy nexus in water supply systems or “water supply side of the nexus”. Studies reported in the literature are categorised and systematically analysed in terms of different energy sources, centralised/ decentralised approaches and system parameters uncertainties. Several major gaps are identified. These include the lack of optimisation models capturing spatial aspects as well as environmental impacts of the nexus problems. The shortage of models considering uncertainties associated with water demand and renewable energy supply is another knowledge gap in this area. However, the main gap is the absence of models for optimising long-term planning of water supply system considering renewable energy within an urban context. Accordingly, based on this review, we have suggested pointers for future studies in the water supply side of the nexus

    Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom

    No full text
    Achieving national targets for net-zero carbon emissions will require atmospheric carbon dioxide removal strategies compatible with rising agricultural production. One possible method for delivering on these goals is enhanced rock weathering, which involves modifying soils with crushed silicate rocks, such as basalt. Here we use dynamic carbon budget modelling to assess the carbon dioxide removal potential and agricultural benefits of implementing enhanced rock weathering strategies across UK arable croplands. We find that enhanced rock weathering could deliver net carbon dioxide removal of 6–30 MtCO2 yr−1 for the United Kingdom by 2050, representing up to 45% of the atmospheric carbon removal required nationally to meet net-zero emissions. This suggests that enhanced rock weathering could play a crucial role in national climate mitigation strategies if it were to gain acceptance across national political, local community and farm scales. We show that it is feasible to eliminate the energy-demanding requirement for milling rocks to fine particle sizes. Co-benefits of enhanced rock weathering include substantial mitigation of nitrous oxide, the third most important greenhouse gas, widespread reversal of soil acidification and considerable cost savings from reduced fertilizer usage. Our analyses provide a guide for other nations to pursue their carbon dioxide removal ambitions and decarbonize agriculture—a key source of greenhouse gases
    corecore