99 research outputs found

    Static characteristics of the double rotor switched reluctance motor

    Get PDF
    Static measurement characteristics of the double rotor switched reluctance motor developed on the basis of double salient dual air-gap structure is put forward in this paper. The reduction of the air - gap length of the conventional machine is constrained by the mechanical intolerances that inherit the torque generating capability. Therefore there is always a limitation on the air-gap length. However, with reduced air-gap length the magnetic flux control is improved with the aid of dual air-gap structure inside the machine. Analytical and finite element analysis is carried out to investigate the magnetic field distribution at different rotor positions and with different currents. The static torque characteristics derived from the fabricated model is compared with that of the finite element methods and analytical methods. The measurement results are in closer agreement with the analytical and simulation. Motor constant square density is used for the performance evaluation of the proposed machine and the characteristics are evaluated and compared by all three methods presented

    Performance Improvement of a Portable Electric Generator Using an Optimized Bio-Fuel Ratio in a Single Cylinder Two-Stroke Engine

    Get PDF
    The performance of an electrical generator using bio-fuel and gasoline blends of different composition as fuel in a single cylinder engine is presented. The effect of an optimized blend ratio of bio-fuel with gasoline on engine performance improvement and thereby on the electrical generator output is studied. Bio-fuels such as ethanol, butanol and methanol are blended with gasoline in different proportions and evaluated for performance. The effects of different bio-fuel/gasoline blending ratios are compared experimentally with that of the gasoline alone using the output power developed by the electric generator as the evaluation parameter. With a composition of 10% ethanol–gasoline, the engine performance is increased up to 6% and with a blending ratio of 20% butanol–gasoline the performance is increased up to 8% compared to the use of 100% gasoline. The investigations are performed on a portable generator used in palm tree harvesting applications

    MITIGATION OF POWER QUALITY ISSUES IN DISTRIBUTION SYSTEMS USING HARMONIC FILTERS AND CAPACITOR BANKS

    Get PDF
    Due to increased load demand, the power system developers are encouraged to meet power quality requirements. Using harmonic filter and capacitor bank is one of the essential solutions in mitigating power quality issues. This research aims to mitigate harmonics and improve the voltage in distribution systems by using ETAP. For this purpose, a distribution system in Homs city is considered, which is a part of Syrian power system. The capacitor banks are designed using numerical analysis and Optimal Capacitor Placement (OCP). The results indicate that this approach enhances the voltage profile, which is reflected in some buses. The voltage profile is effectively improved on several buses, and power losses are significantly reduced. The Total Harmonic Distortions (THDs) and Individual Harmonic Distortions (IHDs) of the subjected buses are reduced. Moreover, the power factor is improved from 0.877 to 0.926 for the studied system

    Sign language gesture recognition with bispectrum features using SVM

    Get PDF
    Wi-Fi based sensing system captures the signal reflections due to human gestures as Channel State Information (CSI) values in subcarrier level for accurately predicting the fine-grained gestures. The proposed work explores the Higher Order Statistical (HOS) method by deriving bispectram features (BF) from raw signal by adopting a Conditional Informative Feature Extraction (CIFE) technique from information theory to form a subset of informative and best features. Support Vector Machine (SVM) classifier is adopted in the present work for classifying the gesture and to measure the prediction accuracy. The present work is validated on a secondary dataset, SignFi, having data collected from two different environments with varying number of users and sign gestures. SVM reports an overall accuracy of 83.8%, 94.1%, 74.9% and 75.6% in different environments/scenarios.Taylor's University through its TAYLOR'S PhD SCHOLARSHIP Programmeinfo:eu-repo/semantics/publishedVersio

    Reduced mechanical oscillations using the MAGLEV concept in vertical axis wind turbine

    Get PDF
    Due to its low power design applications, the Vertical Axis Wind Turbine is more commonly employed for the standalone applications. The power generating capability in wind turbines is influenced by the mechanical dimensions of the blade including the shape of the blade and the angle of attack. The appropriate design of the blade shape and position tends to improvise the efficiency even at low wind speed. Initially the shape of the airfoil is designed and analyses and the position for a five blade structure is investigated. The degree of impact at angle of 30° is found to have the highest lift coefficient for the chosen airfoil structure. The use of MAGLEV concept in the VAWT reduces the vibration by 37.5%. Experimental results are presented with and without MAGLEV imported to the VAWT design. Also it is measured that the power generated with maglev system is increase by 12 % compare to the normal wind turbine

    Voltage Oriented Controller based Vienna Rectifier for Electric Vehicle Charging Stations

    Get PDF
    Vienna rectifiers have gained popularity in recent years for AC to DC power conversion for many industrial applications such as welding power supplies, data centers, telecommunication power sources, aircraft systems, and electric vehicle charging stations. The advantages of this converter are low total harmonic distortion (THD), high power density, and high efficiency. Due to the inherent current control loop in the voltage-oriented control strategy proposed in this paper, good steady-state performance and fast transient response can be ensured. The proposed voltage-oriented control of the Vienna rectifier with a PI controller (VOC-VR) has been simulated using MATLAB/Simulink. The simulations indicate that the input current THD of the proposed VOC-VR system was below 3.27% for 650V and 90A output, which is less than 5% to satisfy the IEEE-519 standard. Experimental results from a scaled-down prototype showed that the THD remains below 5% for a wide range of input voltage, output voltage, and loading conditions (up to 2 kW). The results prove that the proposed rectifier system can be applied for high power applications such as DC fast-charging stations and welding power sources

    Mathematical toolbox and its application in the development of laboratory scale vertical axis wind turbine

    Get PDF
    Wind turbine works with the principle of extracting energy from the wind to generate electricity. The power generated is directly proportional to the wind speed available. There are two major types of wind turbine design, namely the horizontal and vertical axis wind turbine depending on the orientation of the turbine rotor and its generator. This paper deals with the design of vertical turbine due to its advantage of operating at a low wind speed over that of horizontal turbine. The analysis of change in the parameters of a vertical axis wind turbine is investigated to get the optimized way in which the rotor of the turbine is to be designed. This is done through modelling and simulation of the turbine using various parameters in the MATLAB/SIMULINK environment. A graphical user interface is created for a generic model of vertical axis wind turbine that is used to determine its parameters

    Double-Rotor Switched Reluctance Machine (DRSRM): fundamentals and magnetic circuit analysis

    Get PDF
    A novel switched reluctance machine with a double rotor configuration is introduced in this paper. The proposed design is based on optimization of the electromagnetic forces, which leads to a better electro mechanical energy conversion process. Finite Element Analysis (FEA) is used to simulate the torque characteristics and the harmonic distortion is used to evaluate the performance of the proposed motor. In the conventional machine structure the torque ripple is major drawback as the majority of the forces produced are in the radial direction that in turn does not contribute much to the torque production. However a larger torque value can be achieved if the normal forces are in the direction of motion. Double rotor exploits the fact that the same excitation produces dual magnetic paths if the reluctance between iron and air is reduced to half with increased area of flux linkage thereby maximizing the generated torque. Because of the difference in value in the radii the torque developed is not doubled due to the mechanical tolerances. However, the torque generated in double rotor is higher than conventional structures because of the reduced variable reluctance in the air gap. Both rotors are fixed to the same shaft which leads to a unidirectional torque and consequently by law of superposition, the torque generated piled up together. Based on the above motivation, the Double Rotor SRM (DRSRM) is proposed. Another advantage of the proposed DRSRM is the increase of the effective area usage for the machine structure. The results of our investigations indicate that the proposed geometry offers superior performance with improved torque characteristics with reduced THD
    corecore