1,012 research outputs found

    Sum Rules for Heavy Flavor Transitions in the SV Limit

    Get PDF
    We show how sum rules for the weak decays of heavy flavor hadrons can be derived as the moments of spectral distributions in the small velocity (SV) limit. This systematic approach allows us to determine corrections to these sum rules, to obtain new sum rules and it provides us with a transparent physical interpretation; it also opens a new perspective on the notion of the heavy quark mass. Applying these sum rules we derive a lower bound on the deviation of the exclusive form factor FB−>D∗F_{B->D^*} from unity at zero recoil; likewise we give a field-theoretical derivation of a previously formulated inequality between the expectation value for the kinetic energy operator of the heavy quark and for the chromomagnetic operator. We analyze how the known results on nonperturbative corrections must be understood when one takes into account the normalization point dependence of the low scale parameters. Relation between the field-theoretic derivation of the sum rules and the quantum-mechanical approach is elucidated.Comment: 72 pages, 5 figures (uuencoded ps files added using figures option), Revised version. Paper is considerably extended to include some new results. New section on quantum mechanical approach is adde

    On the Motion of Heavy Quarks inside Hadrons: Universal Distributions and Inclusive Decays

    Full text link
    In previous papers we have pointed out that there exists a QCD analog of the phenomenological concept of the so called Fermi motion for the heavy quark inside a hadron. Here we show in a more detailed way how this comes about and we analyze the limitations of this concept. Non-perturbative as well as perturbative aspects are included. We emphasize both the similarities and the differences to the well-known treatment of deep inelastic lepton-nucleon scattering. We derive a model-independent {\em lower} bound on the kinetic energy of the heavy quark inside the hadron.Comment: 34 pages, Latex, 4 figures. Some clarifying comments and postscript files of figures are adde

    Hadronic Light-by-Light Scattering in the Muonium Hyperfine Splitting

    Full text link
    We consider an impact of hadronic light-by-light scattering on the muonium hyperfine structure. A shift of the hyperfine interval Δν(Mu)HLBL\Delta \nu({\rm Mu}) _{\rm\tiny HLBL} is calculated with the light-by-light scattering approximated by exchange of pseudoscalar and pseudovector mesons. Constraints from the operator product expansion in QCD are used to fix parameters of the model similar to the one used earlier for the hadronic light-by-light scattering in calculations of the muon anomalous magnetic moment. The pseudovector exchange is dominant in the resulting shift, Δν(Mu)HLBL=−0.0065(10)Hz\Delta \nu({\rm Mu})_{\rm\tiny HLBL}= -0.0065(10) {Hz}. Although the effect is tiny it is useful in understanding the level of hadronic uncertainties.Comment: 16 pages, 7 figures, a reference adde

    Exact Results in Gauge Theories: Putting Supersymmetry to Work. The 1999 Sakurai Prize Lecture

    Full text link
    Powerful methods based on supersymmetry allow one to find exact solutions to certain problems in strong coupling gauge theories. The inception of some of these methods (holomorphy in the gauge coupling and other chiral parameters, in conjunction with instanton calculations) dates back to the 1980's. I describe the early exact results -- the calculation of the beta function and the gluino condensate -- and their impact on the subsequent developments. A brief discussion of the recent breakthrough discoveries where these results play a role is given.Comment: Based on the talk at the Centennial Meeting of The American Physical Society, March 20-26, Atlanta, GA. LaTex (uses sprocl.sty), 36 pages, 5 eps figures include

    Tunneling-assisted impact ionization fronts in semiconductors

    Get PDF
    We propose a novel type of ionization front in layered semiconductor structures. The propagation is due to the interplay of band-to-band tunneling and impact ionization. Our numerical simulations show that the front can be triggered when an extremely sharp voltage ramp (∼10kV/ns\sim 10 {\rm kV/ns}) is applied in reverse direction to a Si p+−n−n+−p^+-n-n^+-structure that is connected in series with an external load. The triggering occurs after a delay of 0.7 to 0.8 ns. The maximal electrical field at the front edge exceeds 106V/cm10^6 {\rm V/cm}. The front velocity vfv_f is 40 times faster than the saturated drift velocity vsv_s. The front passes through the n−n-base with a thickness of 100μm100 {\mu m} within approximately 30 ps, filling it with dense electron-hole plasma. This passage is accompanied by a voltage drop from 8 kV to dozens of volts. In this way a voltage pulse with a ramp up to 500kV/ns500 {\rm kV/ns} can be applied to the load. The possibility to form a kilovolt pulse with such a voltage rise rate sets new frontiers in pulse power electronics.Comment: 12 pages, 6 figure

    Rapid dissipation of magnetic fields due to Hall current

    Get PDF
    We propose a mechanism for the fast dissipation of magnetic fields which is effective in a stratified medium where ion motions can be neglected. In such a medium, the field is frozen into the electrons and Hall currents prevail. Although Hall currents conserve magnetic energy, in the presence of density gradients, they are able to create current sheets which can be the sites for efficient dissipation of magnetic fields. We recover the frequency, ωMH\omega_{MH}, for Hall oscillations modified by the presence of density gradients. We show that these oscillations can lead to the exchange of energy between different components of the field. We calculate the time evolution and show that magnetic fields can dissipate on a timescale of order 1/ωMH1/\omega_{MH}. This mechanism can play an important role for magnetic dissipation in systems with very steep density gradients where the ions are static such as those found in the solid crust of neutron stars.Comment: 9 pages, changed fig.

    Magnetic Flux Expulsion in the Powerful Superbubble Explosions and the Alpha-Omega Dynamo

    Full text link
    The possibility of the magnetic flux expulsion from the Galaxy in the superbubble (SB) explosions, important for the Alpha-Omega dynamo, is considered. Special emphasis is put on the investigation of the downsliding of the matter from the top of the shell formed by the SB explosion which is able to influence the kinematics of the shell. It is shown that either Galactic gravity or the development of the Rayleigh-Taylor instabilities in the shell limit the SB expansion, thus, making impossible magnetic flux expulsion. The effect of the cosmic rays in the shell on the sliding is considered and it is shown that it is negligible compared to Galactic gravity. Thus, the question of possible mechanism of flux expulsion in the Alpha-Omega dynamo remains open.Comment: MNRAS, in press, 11 pages, 9 figure
    • …
    corecore