
H
E

P-
PH

-9
40

54
10

Theoretical Physics Institute

University of Minnesota

TPI-MINN-94/12-T
UMN-TH-1250-94

CERN-TH.7250/94
UND-HEP-94-BIG 05

Sum Rules for Heavy Flavor Transitions

in the SV Limit

I. Bigi a;b, M. Shifman c, N.G. Uraltsev a;c;d, A. Vainshtein c;e

aTH Division, CERN, CH-1211 Geneva 23, Switzerland�

bDept.of Physics, Univ. of Notre Dame du Lac, Notre Dame, IN 46556, U.S.A.y

c Theoretical Physics Institute, Univ. of Minnesota, Minneapolis, MN 55455
d St.Petersburg Nuclear Physics Institute, Gatchina, St.Petersburg 188350, Russiay

e Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

e-mail addresses:
bigi@cernvm.cern.ch, shifman@vx.cis.umn.edu, vainshte@vx.cis.umn.edu

Abstract

We show how previously obtained sum rules for the weak decays of heavy 
a-
vor hadrons can be derived as the moments of spectral distributions in the small
velocity (SV) limit. This systematic approach allows to determine corrections to
these sum rules, to obtain new sum rules and it provides us with a transparent
physical interpretation; it also opens a new perspective on the notion of the heavy
quark mass. Applying these sum rules we derive a lower bound on the deviation of
the exclusive form factor FB!D� from unity at zero recoil; likewise we give a �eld-
theoretical derivation of a previously formulated inequality between the expectation
value for the kinetic energy operator of the heavy quark and for the chromomagnetic
operator. We analyze how the known results on nonperturbative corrections must
be understood when one takes into account the renormalization point dependence
of the low energy parameters.
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1 Introduction

The theory of preasymptotic e�ects in inclusive weak decays of heavy 
avor hadrons
has been developed from the early eighties on [1] { [8] and is entering now a rather
mature stage [9] { [18]. In recent papers [14, 15, 16] it was in particular shown how
the e�ects due to the motion of the heavy quarks inside the hadrons can be incor-
porated in a systematic way, namely through distribution functions which crucially
depend on the ratio 
 = mq=mQ where mQ and mq are the masses of the initial
and �nal state quarks, respectively. Among other things, it was mentioned that
the formalism developed in Ref. [14] automatically ensures the Bjorken sum rule
[19, 20, 21] in the small velocity (SV) limit [22] (Sect. 4 of Ref. [14]). In the present
work we discuss in more detail the sum rules of Refs. [22], [19] { [20], as well as
the so-called optical sum rules derived later by Voloshin [23]. Quantum mechanical
approach to sum rules has been considered by Lipkin [24], the so-called M�ossbauer
sum rules.

These are the three main observations of our paper:
�We will demonstrate that these apparently isolated sum rules represent merely

moments of observable spectral distributions. Their physical meaning becomes ab-
solutely transparent within the formulation of the problem suggested in Ref. [14].
Actually many crucial elements are already included, implicitly and explicitly, in
Ref. [14], so our task is to combine them. This approach allows one to get new sum
rules and to obtain corrections to the old ones in a systematic and comprehensive
way.

� The analysis of the sum rules will also give us an opportunity to discuss the
notion of the heavy quark mass from the point of view complementary to recent
investigations [25, 26]. It will be shown that the key theoretical parameter �(�)
is directly related to quantities measurable in inclusive semileptonic decays of B
mesons in a certain kinematical regime. The relation obtained makes absolutely
explicit the fact that � does not exist as a universal constant, as had been previously
believed. Any consistent treatment must deal with a � dependent function, �(�),
where � is a normalization point.

� One can use the sum rules to derive a lower bound on the deviation of the ex-
clusive form factor FB!D� from unity at zero recoil. The lower bound is essentially
determined by the average value of the chromomagnetic operator �2G, familiar from
the previous studies. We also obtain a new �eld-theoretic derivation of the previ-
ously formulated inequality �2� > �2G (�2� is the average value of the kinetic energy
operator) whose validity was questioned by some authors through the suggestion
that the original line of reasoning was purely quantum-mechanical.

The organization of the paper is as follows. In Sect. 2 all basic elements of
our approach are demonstrated in the simpli�ed model where the heavy quarks are
deprived of their spins and the external \weak" current considered is scalar. Sect.
3 is devoted to real QCD; here we �nd a lower bound on 1 � F 2

B!D�
at zero recoil

and present expressions for �(�) in terms of the di�erential distributions observable
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in semileptonic B meson decays. Sect. 4 addresses practical implications of the
\running" of basic low energy parameters of the e�ective theory, and in Sect. 5 we
brie
y summarize the main results.

2 The `Optical' and Other Sum Rules

Inclusive heavy 
avor decays are closely related to the case of deep inelastic scatter-
ing (DIS). While the latter was in the focus of theoretical investigations in the early
days of QCD, heavy 
avor decays received marginal attention. Recently it has been
shown that many elements of the theory of DIS �nd their parallels in heavy 
avor
decays. In this paper we discuss one more aspect with an apparent analogy in the
theoretical treatments, namely the sum rules.

Let us recall that the standard analysis of DIS [27] proceeds as follows. One
starts from the operator product expansion (OPE) for the T product

T̂�� = i
Z
d4xe�iqxTfjy�(x)j�(0)g (1)

where j� is the electromagnetic or some other current of interest. The average of

T̂�� over nucleon state with momentum p presents a forward scattering amplitude
of Compton type. The expansion is performed for large Euclidean q2 and small
(vanishing) values of � = qp, i.e. parametrically far from the physical cuts. After
averaging of the operator product expansion one arrives at a set of predictions for
the coe�cients of the � expansion of the Compton amplitude at � = 0 and given
q2. These coe�cients are related, via dispersion relations, to the integrals over the
imaginary part of the amplitude at hand (the moments of the structure functions).

The strategy, as well as the results obtained, are quite general. At the same time,
certain moments play a distinguished role due to the fact that they turn out to be
proportional to operators whose matrix elements over the nucleon state are known
on general grounds. Relations emerging in this way are called sum rules proper and
possess particular names. In the case of unpolarized target we deal with the Adler
sum rule for neutrino scattering and the Gross-Lewellyn-Smith sum rule [27].

Conceptually a very similar description can be applied to the weak decays of
heavy 
avor hadrons. One relates the observable quantities to a non-local transition
operator T̂ , expands the latter into a series of local operators and determines their
expectation values between the state HQ. There exist of course several technical
di�erences relative to the case of DIS: one deals with heavy quark currents, uses
the heavy quark mass as the expansion parameter instead of the square of the
momentum transfer and forms the expectation values for the heavy 
avor hadron
HQ. Furthermore one can predict absolute decay rates, not only their evolution as
the scale changes.

To introduce the reader to the range of questions to be considered below in the
most straightforward way we �rst \peel o� " all inessential technicalities, like the
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quark spins, and resort to a simpli�ed model which has been previously discussed in
Ref. [14]. It will be a rather simple exercise to return afterwards to standard QCD.

2.1 Description of the model

We consider a toy example where all quarks are spinless; two, denoted by Q and q,
couple to a massless real scalar �eld �:

L� = h �Q�q + h:c: ; (2)

where h is the coupling constant and �Q = Qy. The masses of the quarks Q and q

are both large. Later on we will analyze the SV limit where

�QCD � mQ �mq � mQ (3)

has to hold, but for the time being the ratio 
 = mq=mQ can be arbitrary provided
thatmQ�mq � �QCD

1. The �eld � carries color charge zero; the reactionQ! q+�
is thus a toy model for the radiative decays of the type B ! Xs
.

The total width for the free quark decay Q ! q + � is given by the following
expression:

�(Q! q�) =
h2E0

8�m2
Q

� �0 (4)

where

E0 =
m2

Q �m2
q

2mQ

: (5)

As explained in Refs. [1] { [14] the theory of preasymptotic e�ects in the inclusive
decays is based on introducing the transition operator,

T̂ = i

Z
d4x e�iqxTf �Q(x)q(x) ; �q(0)Q(0)g: (6)

Then the energy spectrum of the � particle in the inclusive decay is obtained from
T̂ in the following way:

d�

dE
=

h2E

4�2MHQ

Im hHQjT̂ jHQi (7)

where HQ denotes a hadron built from the heavy quark Q and the light cloud
(including the light antiquark). If not stated otherwise HQ will denote the ground
state in a given channel. Moreover, one can (and must) apply the Wilson operator
product expansion [28] (OPE) to express the non-local operator T̂ through an in�nite
series of local operators with calculable coe�cients.

1To reach the SV limit in the B ! Xce� transitions there is no need to assume that mb�mc �
mc. The small velocity regime for the c quark can be ensured by adjusting q2 appropriately.
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2.2 OPE and predictions for observable quantities

In the Born approximation the transition operator has the form (Fig. 1)

T̂ = �
Z
d4x(xj �Q 1

(P0 � q + �)2 �m2
q

Qj0) ; (8)

iD� � mQv� + ��

which is particularly suitable for constructing the OPE by expanding eq.(8) in pow-
ers of � (see Ref. [14] where all notations have been introduced). The operators
appearing as a result of this expansion are ordered according to their dimension.
The leading operator �QQ has dimension 2 (let us remind that the scalar Q �eld
has dimension 1 in contrast to the real quark �elds of dimension 3=2 which leads
in particular to di�erent normalization factors; we still use relativistic normaliza-
tion). Its expectation value for the state HQ reduces to unity to leading order in
1=mQ; this contribution gives rise to the parton result eq.(4). Beyond the leading
approximation it takes the form [14]

1

2MHQ

hHQj �QQjHQi =
1

2mQ

 
1 � 1

2m2
Q

hHQj �Q~�2QjHQi+ :::

!
; (9)

thus, one gets a correction of order 1=m2
Q.

Corrections of the same order come from higher-dimensional operators in the
expansion of the transition operator. There are no relevant operators of next di-
mension 3 (more exactly, as was �rst noted in Ref. [4] in the framework of HQET,
they vanish because of the equations of motion2 ). The only operator of dimension
four in our toy model has the form �Q~�2Q and it generates a 1=m2

Q correction after
taking the matrix element over HQ. We will not discuss corrections of order 1=m3

Q

or higher in this paper.
After simple algebra one �nds

1

�
Im hT̂ i =

 h �QQi
2mQ

� h �Q~�2Qi
12m3

Q

!
�(E �E0)�

E0h �Q~�2Qi
12m3

Q

�0(E �E0) +
E2
0h �Q~�2Qi
12m3

Q

�00(E � E0) + ::: (10)

where operators of higher dimension have been ignored and we have used a shorthand
notation for the expectation value over HQ: h:::i � hHQj:::jHQi.

2This statement is sometimes erroneously interpreted as a proof for the absence of a term linear
in 1=mQ in the total width, see below. As a matter of fact the authors of Ref. [4] believed that
the linear term may appear in the total width from the overall normalization of hHQj�hvhvjHQi, as
explicitly stated, e.g., on page 404 of Ref. [4]. Anyway this question cannot be addressed purely
in HQET per se because applying e�ective theory requires here explicit discussion of matching
the coe�cient functions to full QCD, which, in turn, depends on the operator structure in both
theories, see corresponding discussion in Ref. [25].
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The expansion of Im T̂ into local operators generates more and more singular
terms at the point where the � spectrumwould be concentrated in the approximation
of the free quarks. The physical spectrum on the other hand is a smooth function of
E. In principle, one could derive a smooth spectrum by summing up an in�nite set
of operators to all orders (for more detail see Refs. [14, 15, 16]). There is no need
to carry out this summation here, however, since we are interested only in integral
characteristics (we will discuss certain sum rules), and as far as they are concerned
the expansion in eq.(10) is perfectly legitimate.

At �rst, we calculate the total width by substituting eq. (10) into eq. (7) and
integrating over E. As a matter of fact, the result has already been given in Ref. [14],

� =
Z
dE

d�

dE
= �0

 
1� �2�

2m2
Q

+ :::

!
: (11)

where the integration runs from 0 to the physical boundary E
phys
0 , expressed in the

hadron masses

Ephys
0 =

M2
Q �M2

q

2MQ

; MQ �MHQ
; (12)

and the same convention for Mq. We use here the standard notation for the expec-
tation value of ~�2,

�2� = hHQj �Q~�2QjHQi: (13)

The expression in the brackets in eq.(11) is nothing but the (corrected) matrix
element of the operator �QQ; the only possible e�ective operator �Q~�2Q of dimension
4 drops out in � on general grounds [14] being not a Lorentz scalar. The meaning
of this term in h �QQi is quite transparent: it re
ects time dilation for the moving
quark, and the coe�cient (�1=2) could therefore have been guessed from the very
beginning. The absence of a correction of order 1=mQ in the total width in the toy
example under consideration is a manifestation of the general theorem established
in Refs. [6, 7] and discussed in more detail recently in Ref. [25].

As we will see shortly, eq.(11) treated in the SV limit is equivalent to two results
simultaneously: that of Ref. [22] and the Bjorken sum rule [19, 20], with appropriate
corrections due to terms which were not considered in Refs. [19, 20, 22]. All sum
rules analogous to that of eq. (11) below will generically be referred to as the �rst

sum rule.
Eq. (11) is the �rst example of the sum rules we will be dealing with throughout

the paper. Its derivation (as well as that of all similar sum rules) intuitively is
perfectly clear { the integrated spectrum of the decay obtained at the quark-gluon
level using the OPE is equated with the integrated physical spectrum, saturated by
the genuine hadronic states. We will elaborate on the justi�cation for this procedure
in Sect. 3.1 where, among other things, we discuss the accuracy one may expect
from relations of this type; the general idea lying behind all such relations is wide-
spread in QCD. For the moment we just adopt the heuristic attitude outlined above
without submerging into further, less pragmatic, questions.
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Next, we calculate the average energy of the � particle. The corresponding sum
rule (see Ref. [29]) in the SV limit is just a version of Voloshin's optical sum rule!

To be more exact, one considers

I1 =
Z E

phys
0

0
dE (Ephys

0 � E)
d�

dE
: (14)

Notice that in the SV limit Ephys
0 � E reduces to the excitation energy of the �nal

hadron produced in the decay. The factor Ephys
0 �E in the integrand eliminates the

\elastic" peak, so that the integral is saturated only by the inelastic contributions.
Let us note in passing (we will discuss this point later in more detail) that the
optical sum rule [23] in its original formulation is actually divergent; a cuto� must be
introduced by hand. In our formulation, of course, there is no place for divergences;
the expectation value of Ephys

0 � E is de�ned via convolution with the physical
spectrum, and since the � energy in the decay is �nite the expectation value of
Ephys
0 � E, as well as higher moments, are certainly �nite. The decay kinematics

provides us with a natural cuto� at the scale of the energy release.
Explicit calculation of I1 using eq.(10) yields

I1 = �0

 
�� �2�E

phys
0

2m2
Q

!
(15)

where � is de�ned as follows

� = E
phys
0 � E0; (16)

see eqs. (5) and (12). The sum rule (15) contains Voloshin's result, again with
corrections left aside previously [23, 29]. The sum rules analogous to that of eq.
(15) below will be generically referred to as the second sum rule.

It is quite evident that the series of sum rules generalizing those of Bjorken and
Voloshin can readily be continued further. For the next moment, for instance, we
get

I2 =
Z E

phys

0

0
dE (Ephys

0 � E)2
d�

dE
=

�0

"
�2

 
1� �2�

2m2
Q

!
� �2�E0�

m2
Q

+
�2�E

2
0

3m2
Q

#
: (17)

Analyzing this sum rule in the SV limit one obtains, in principle, additional infor-
mation, not included in the results of Refs. [19, 20, 22, 23]. It is worth emphasizing
that in eqs. (11), (15) and (17) we have collected all terms through order �2

QCD,
whereas those of order �3

QCD are systematically omitted. Predictions for higher
moments would require calculating terms O(�3

QCD) and higher.
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2.3 SV limit and the sum rules

We proceed now to discussing the sum rules (11), (15) and (17) in the SV limit,
eq.(3). The availability of the extra expansion parameter, j~vj � 1 makes the SV
limit a very interesting theoretical laboratory. We have already mentioned that in
this limit the Bjorken sum rule relates the distortion of the \elastic" peak to the
integral over the inelastic contributions. Here we will elaborate on this issue. First,
we brie
y recall what is already known and then present new results.

For technical reasons we will assume that

�QCD � mQ �mq �
q
mQ�QCD: (18)

The inequality on the right hand side is not essential and can easily be lifted; it
helps, however, to make all formulae more concise, and we will accept it for a while,
thus replacing eq.(3) by the stronger condition of eq.(18). We now supplement the
expansion in �QCD carried out above by an expansion in ~v. The natural hierarchy
of parameters in the domain (18) is as follows

~v2; j~vj(�QCD=mQ); �2
QCD=m

2
Q :

Terms of order v4 � �2
QCD=m

2
Q will be omitted.

Expanding the hadron masses in terms of the heavy quark masses mQ and mq

one �nds for scalar quarks

MQ = mQ + �+
�2�
2mQ

+O(1=m2
Q); Mq = mq + �+

�2�
2mq

+O(1=m2
q) : (19)

Eq. (19) implies, in turn, that

� = E
phys
0 � E0 =

1

2
v20

0
@� +

2�
2
+ 1

2
�2�

MQ

1
A � v0

�2�
2MQ

+ ::: (20)

where for convenience we introduced a parameter v0,

v0 = (MQ �Mq)=MQ: (21)

This parameter approximately coincides with the velocity of the heavy hadron pro-
duced in the transition Q! q�. Indeed, if the mass of the produced excited hadron
is Mq + � then its velocity

j~vj = v0
1� (v0=2)

1 � v0
� �

MQ

1� v0 + (v20=2)

(1 � v0)2
� �2

2M2
Q

1� 4v0 � 2v20
(1 � v0)3

+O(�3): (22)

With all these de�nitions the sum rules (15) and (17) take the form

I1 = �0

 
1

2
v20�� v0

�2�
MQ

+ :::

!
(23)
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and

I2 = �0
1

3
v20�

2
� + ::: (24)

where ellipses denote the systematically omitted terms of order �3
QCD, as well as

O(v20�2
QCD) terms for I1 and O(v40�2

QCD) ones for I2. The �rst term on the right hand
side of eq.(23) corresponds to Voloshin's relation, the second term is a correction
whose physical meaning will soon become clear.

To interpret the sum rules derived it will be instructive to consider the transition
operator o� the physical cut. Then, expressing the result in terms of E � Ephys

0 we
get

M�1
Q hHQjT̂ jHQi =

1

2m2
Q

( 
1� 2�2�

3m2
Q

!
1

E � E
phys
0

+

 
��+

E0�
2
�

6m2
Q

!
1

(E � E
phys
0 )2

+
E2
0�

2
�

3m2
Q

1

(E � E
phys
0 )3

+ :::

)
: (25)

To zeroth order in v or �QCD there remains only the �rst term on the right
hand side of eq. (25). The inclusive decay rate is then totally saturated by a
single \elastic" channel, the production of the ground state meson containing q.
This is the perfect inclusive-exclusive duality noted in Ref. [22]. The peak in the �
spectrum obtained in the quark transition Q ! �q survives hadronization in this
approximation; at the hadronic level HQ ! Hq� we still have the same peak at
the same energy. Eqs. (23) and (24) are, of course, trivially satis�ed in this case
because in the absence of the inelastic contributions both sum rules yield vanishing
numbers.

Furthermore, the termswith �QCD comewith v. To order � there is only one such
term, appearing in eq. (23) for I1. This term shows that the inelastic production
must already be present at this level. It corresponds to the production of a meson
H�
q with excitation energy � �QCD and a residue / v20. Then eq. (11) implies that

the height of the elastic peak is reduced by v20. A rough model examplifying this
picture can be obtained from eq. (25). In this approximation, one can rewrite it as
follows, omitting all numerical factors:

M�1
Q hHQjT̂ jHQi = 1

2m2
Q

(
(1� v20)

1

E � Ephys
0

+ v20
1

(E � Ephys
0 + �)

+ :::

)
: (26)

The �rst term is the elastic peak while the second is an inelastic contribution. Of
course eq.(26) is an illustration and not a unique solution.

Technically, the term v2� in eq. (23) arises because the \elastic" peak of the
quark transition situated at E = E0 is slightly shifted when we pass to the hadronic
transition; the genuine hadronic elastic peak is situated at E = E

phys
0 , to the right

of the quark peak (see Fig. 2).

Including O(�2
) contributions we get correction terms in eqs. (11) and (23), and

eq. (24) for I2 becomes non-trivial. The new term in eq. (23) has a simple meaning.
In the toy example at hand the excited mesons produced in the decay, at the level of
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v2 are spin-1 mesons, with the vertex proportional to (~v~�) where ~� is the polarization
vector and ~v is the velocity of the given meson. This velocity, di�ers, however, from
the quark-level velocity v0 by terms of order �QCD=mQ, see eq. (22). This rather
trivial shift in velocity nicely explains all the sum rules above. Indeed, let us take

into account that the physical v2 reduces to v20 � v0(�=MQ) + (�
2
=M2

Q). The height
of the inelastic contribution is proportional to the square of the physical velocity,

while the size of the inelastic domain is � � + (�
2
=mQ). Hence, with our accuracy

the right-hand side of eq. (23) is expected to be � v20(� + (�
2
=mQ))� v0(�

2
=mQ) ,

while the right-hand side of eq. (24) is expected to be � �
2
v20 , in full accord with

what we actually have. A qualitative model of saturation now takes the form

M�1
Q hHQjT̂ jHQi =

1

2m2
Q

( 
1� 2�2�

3m2
Q

� 
�1(�� E0�
2
�

6m2
Q

)

!
1

E � E
phys
0

+


�1
 
�� E0�

2
�

6m2
Q

!
1

E �E
phys
0 + 


)
: (27)

where

 � [� + (�

2
=mQ)] :

2.4 Perturbative gluon corrections

So far we have assigned the gluon �eld to play the role of a soft medium to incorpo-
rate the e�ects of long distance dynamics and have completely ignored perturbative
gluon corrections. Yet those have to be included; among other things the emission
of hard gluons generates the spectral density outside the end-point region which is
very relevant for our analysis.

In calculating radiative gluon correction we can disregard, in the leading ap-
proximation, non-perturbative e�ects, like the di�erence between mQ and MQ or
the `Fermi' motion of the initial quark. Thus we deal with the decay of the free
quark Q at rest into q+�+ gluon. The virtual gluon contribution merely renormal-
izes the constant h in the analysis presented above. The analogous renormalization
for the spinor case has been calculated in Ref. [22].

The e�ects from real gluon emission are most simply calculated in the Coulomb
gauge, where only the graph shown in Fig. 3 contributes. A straightforward com-
putation yields to leading order in v2 (or E)

d�(1)

dE
= �0

8�s
9�

E3

E0m
2
Q(E0 � E)

: (28)

It is well-known that the logarithmic singularity in the integral over E for the �tot is
canceled by a contribution of soft virtual gluons into the renormalization of h. For
the second sum rule we are going to discuss here, this infrared range is not singular.
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Gluon emission obviously contributes to the spectrum in its entire domain 0 <
E < E0. In this order �s does not run, of course. To demonstrate its scale de-
pendence one has to carry out a two-loop calculation; it is quite evident, however,
that it is �s(E �E0) that enters. Therefore, strictly speaking, one cannot apply eq.
(28) too close to E0. Even leaving aside the blowing up of �s(E � E0), there exists
another reason not to use eq. (28) in the vicinity of E0: if E is close to E0 the gluon
emitted is soft; such gluons are to be treated as belonging to the soft gluon medium
in order to avoid double counting. The separation between soft and hard gluons is
achieved by explicitly introducing a normalization point �. The value of � should
be large enough to justify a smallness of �s(�). On the other hand we would like
to choose � as small as possible. The possible choice is to have � proportional to
�QCD, but with a constant of proportionality that is much larger than unity

� = C�QCD; C � 1:

Then we draw a line: to the left of E0 � � the gluon is considered to be hard, to
the right soft. Of course, the consistent introduction of the infrared renormalization
point � requires that the purely perturbative corrections to the weak vertex, infrared
convergent in any �nite number of loops, have to be calculated using this explicit
cuto� as well (see, e.g. the discussion in Ref. [25]) { which is almost never done in
practice. The corresponding modi�cations will be discussed below in Sect.5.

Let us discuss now the sum rule corresponding to the �rst moment of Ephys
0 �E,

i.e. an analog of eq.(23) with radiative corrections now included. Since our main
purpose in this section is methodical, we will limit ourselves to the �rst order in �
and the second order in v. A qualitative sketch of how d�=dE looks like is presented
in Fig. 4. Then the prediction for I1 can obviously be rewritten as

I1 =
Z E

phys

0

0
(Ephys

0 �E)
d�

dE
dE =

= �0
1

2
v20

"
�(�) + v�20

Z E0��

0

16�s
9�

E3

E0m
2
Q

dE

#
(29)

where by de�nition

�(�) = 2��10 v�20

Z E
phys
0

E
phys

0
��

d�

dE
(Ephys

0 � E) dE: (30)

Without the radiative tail the prediction for I1 could be obtained by integrating the
theoretical expression (10) over a very narrow domain near E0, which formally cor-
responds to � = 0 (cf. eq.(23)). Clearly, there is no way to switch o� the radiative
corrections in QCD: one has to deal with the perturbative and non-perturbative
contributions simultaneously. The introduction of the parameter � thus becomes
mandatory. Eq. (30) then can provide us with one possible physical de�nition of
�(�) (among others) relating this quantity to an integral over a physically measur-
able spectral density. One may rephrase this statement as follows. Since quarks
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are permanently con�ned the notion of the heavy quark mass becomes ambiguous.
To eliminate this ambiguity one must explicitly specify the procedure of measuring
\the heavy quark mass". Any conceivable procedure will necessarily involve a cut-
o� parameter � much in the same way as the procedure de�ned above, and then
�(�) = MQ �mQ(�). In the \most inclusive" procedure when one does not try to
separate out any kind of e�ects, one integrates the tail to the kinematical bound
E ' mQ �mq and, therefore, obtains � normalized at the energy release.

Since this question is very important let us look at it from a slightly di�erent
angle. It had been widely believed that � can be de�ned as a universal constant.
The standard de�nition, being applied to our example, would involve three steps:
(i) Take the radiative perturbative tail to the left of the shoulder and extrapolate
it all the way to the point E = E0; (ii) subtract the result from the measured
spectrum; (iii) integrate the di�erence over dE with the weight function (E�Ephys

0 ).
The elastic peak drops out and the remaining integral is equal to �0(v2=2)�. Yet
this procedure cannot be carried out consistently! For there exists no unambiguous
way to extrapolate the perturbative tail too close to Ephys

0 , the end-point of the
spectra3. Our procedure, with the normalization point � introduced explicitly, is
free from this ambiguity. We will further comment on the issue in Sect. 3.4 where
we discuss the possibility of measuring �(�) in the inclusive B ! Xcl� decays.

In practice, the � dependence of �(�) may turn out to be rather weak. This is
the case if the spectral density is such as shown in Fig. 4, where the contribution of
the �rst excitations (lying within �QCD from E

phys
0 ) is numerically much larger than

the radiative tail representing (at least in the sense of duality) high excitations. It
is quite clear that if the physical spectral density resembles that of Fig. 4 and � =
several units ��QCD the running �(�) is rather insensitive to the particular choice
of �. As known from QCD sum rules it is just this situation which occurs for the
standard quark and gluon condensates (the so-called practical version of Wilson's
OPE).

Still, even if the � dependence of � is practically weak, conceptually it is impos-
sible to de�ne � in the limit �! 0. Physically it is quite clear from the discussion
presented above. This consideration can be thought of as an illustration to a more
formal argument presented recently [25, 26].

If one replaces E in the numerator by E0 (the non-relativistic approximation)
one arrives at the formula obtained previously in Ref. [23]. Notice that the total
prediction for I1 is, of course, � independent. Eq. (29) shows how �(�) changes
under the variation of the normalization point,

�� = ��
16

9

�s(�)

�
: (31)

The numerical coe�cient in front of �� is slightly di�erent from that found in

3The standard procedure e�ectively corresponds to using the literal perturbative expression for
this tail with non-running strong coupling (for one loop calculations), or accounting for the �rst
term in the expansion of �s(k) in terms of �s(m) (in the two loop ones).

11



Ref. [25] (16/9 versus 2�=3). The reason is obvious { we use here a di�erent proce-
dure for de�ning �(�) compared to that suggested in [25]: introducing a gluon mass
� \switches o�" the perturbative tail in a `soft' rather than `hard' way at � = �.
The fact itself of the presence of a linear (in �) renormalization is obviously com-
mon for all proper procedures. In other words, the anomalous dimension of � is the
same as that of the running mass and in the limit mQ ! 1 it is not logarithmic,
but power-like. This fact can be traced back to the mixing between the operators
�Q(ivD)Q and �QQ established in [25]. Numerically �� � 0:1GeV if � changes from
1 to 1:5GeV, i.e. ��(�)=�(�) � 0:2.

By the same token, using the second sum rule, eq. (24), one can give a physical
de�nition of �2�(�),

I2 =
Z E

phys

0

0
(Ephys

0 �E)2
d�

dE
dE =

= �0
1

3
v20

"
�2�(�) + v�20

Z E0��

0

8�s
3�

E3(E0 � E)

E0m
2
Q

dE

#
(32)

where by de�nition 4

�2�(�) = 3��10 v�20

Z E
phys
0

E
phys

0
��

d�

dE
(Ephys

0 � E)2 dE: (33)

The � dependence is then obtained as follows:

��2� �
4�s
3�

��2 � 0:1GeV2 if ��2 � 1GeV2 :

Because the integral of the perturbative tail does not depend on the particular heavy

avor hadron in the initial state, this equation is equivalent to the corresponding
power mixing of the kinetic energy operator with the leading one:

d

d�2
�Q (i ~D)2Q ' 4�s(�)

3�
�QQ (34)

where the exact coe�cient holds for this particular way of introducing the renor-
malization point.

2.5 Sum rules for the form factors at zero recoil

We continue investigating our toy model with the aim of establishing sum rules for
the form factors at zero recoil. These sum rules will allow us to �nd corrections to
the elastic form factor at zero recoil in terms of inelastic contributions.

The starting idea is to consider the kinematical point ~q = 0 and q0 close to
�M = MB �MD. In other words we abandon the case q2 = 0 and turn to q2 6= 0

4We hope that this rather clumsy notation will not cause confusion: �2� is the matrix element
of the kinetic energy operator while � (with no subscript) is a normalization point.
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where q is now the momentum transfer caused by some external \weak" current.
Since ~q = 0 the ground state B meson cannot decay into a P-wave state. Unlike
the case of the Bjorken sum rule there is no \external" vector ~v. The fact that we
are at zero recoil implies that inelastic contributions are suppressed as �2=m2, i.e.
produce e�ect of the same order of magnitude as the corrections to the elastic form
factor.

In the case when ~q 6= 0 the strength of the contribution of the excited resonance
is proportional to ~q2=M2

D [20]. In our kinematics ~q = 0 and the only relevant velocity
is provided by the primordial motion of the c quark inside D (more exactly, it is the
`di�erence' between the quark motions in B and D that counts). The limit ~q ! 0
is obtained, qualitatively, if instead of the \external" velocity we use that of the
primordial motion,

~q 2=M2
D ! �2

QCD=M
2
D :

This analogy nicely illustrates why the residues of the excited resonances are pro-
portional to �2

QCD=M
2
D and match the picture of Fig. 4 where the contribution of

the excited resonances is proportional to ~q 2=M2
D.

Let us sketch how the sum rules at zero recoil emerge technically. To this end we
again consider the T product eq.(6) sandwiched between the B meson state. The
contribution of a given hadronic state in this amplitude is proportional to

1

(MQ � q0)2 �M2
q

=
1

(�M � q0)(�M � q0 + 2Mq)
: (35)

It is convenient to introduce the variable

� = �M � q0 : (36)

We are interested in singularities of the amplitude at small �. The second pole
in eq.(35) at � = �2Mq is a re
ection of a distant singularity corresponding to
the transition B + �D ! �� where the asterisk marks the virtual � quantum. We
assume, as usual, the hierarchy �QCD � �� mQ;q. Correspondingly, we will expand
in �QCD=� and in �=m. In particular, the factor responsible for the second pole in
eq. (35) becomes

1

�M � q0 + 2Mq

=
1

2Mq

(1� �

2Mq

+ :::) ;

the second and higher order terms in the brackets can be omitted since they lead to a
non-singular (at � = 0) expression. The non-singular expressions have no imaginary
part and are irrelevant for our purposes.

Next one considers the theoretical expression for the quark level transition op-
erator,

� T̂ = �Q
1

(mQ �mq � q0)(mQ +mq � q0) + (�2 + 2mQ�0 � 2q0�0)
Q : (37)

13



Our task is to expand the transition operator in �QCD=� and in �=mQ;q and
then to compare the terms singular in 1=� in this theoretical expansion with the
phenomenological expression obtained in the language of the resonance saturation.
A technical point which deserves mentioning right at the beginning is a mismatch
in the de�nitions of �. The theoretical expression (37) is phrased in terms of the
quark mass di�erences without reference to mass di�erences of mesons. Since we
would like to get the sum rules written in terms of the physical excitation energies
(measured from the mass of the lowest-lying meson state) we have to express eq.(37)
in terms of �M rather than �m before expanding it. As we will see shortly, for
our purposes it is necessary to keep all e�ects through order �3=m3; those of order
�4=m4 and higher can be neglected.

The expansion for the meson mass in inverse powers of the heavy quark mass for
spinless quarks considered here looks especially simple. Namely,

MQ = mQ + �+
h~�2i
2mQ

+O
 
�3
QCD

m2
Q

!
(38)

where the following short-hand notation is used,

h~�2i � hHQj �Q~�2QjHQi :

The third term on the right hand side in eq. (38) represents a 1=m2
Q relative

e�ect. We are interested here in the e�ects of order 1=m3
Q. Generally speaking, 1=m

3
Q

corrections can arise from two di�erent sources: (i) 1=m2
Q terms in the expansion

of the Lagrangian in the e�ective theory describing relativistic corrections; (ii) the
second order in ~�2=mQ correction to the meson mass. It is rather trivial to show
that for spinless quarks O(1=m2

Q) terms in the e�ective Lagrangian are absent, and
iteration of the ~�2=mQ term becomes the only source for the mass correction we
are looking for. It is helpful to note that this correction, then, is negative, as a
second order perturbation, in accordance with the well-known theorem. Let us call
the corresponding parameter �33,

MQ = mQ + �+
h~�2i0
2mQ

� �33
m2

Q

+O(m�3
Q ) (39)

where
�33 = imQ

Z
d4xhHQjTf �Q(x)~�2Q(x); �Q(0)~�2Q(0)gjHQi0 > 0 (40)

where the prime indicates the fact that the elastic pole has to be removed from the
correlation function on the right-hand side. The subscript `0' in h~�2i0 is to show
that it is the value of the matrix element at mQ !1 . The expectation value over
the physical state HQ at �nite mQ is di�erent,

h~�2i = h~�2i0 � 4
�33
mQ

+O(m�2
Q ) ; (41)
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so knowing h~�2i for both HQ and Hq �xes h~�2i0 and �33 separately. With these
de�nitions one has

�M = �m

 
1� h~�2i0

2mQmq

+ �33
(mQ +mq)

m2
Qm

2
q

!
: (42)

Substituting eq. (42) in eq. (37) and expanding in �=� and �=mQ;q we arrive at

� hHQjT̂ jHQi =
1

�

h �QQi
2mq

 
1 � h~�2i

2m2
q

!
+

1

�2
�33

(�m)2

2m2
Qm

3
q

(43)

plus terms of higher order in 1=� and in �.
This theoretical expression is to be confronted now with what one obtains from

saturating the amplitude at hand with meson poles. From eq. (35) it is not di�cult
to see that

� hHQjT̂ jHQi =
X

i=0;1;:::

 
1

�

F 2
i

2(Mq)i
+

1

�2
��iF

2
i

2(Mq)i
+ :::

!
(44)

where Fi is the form factor for the transition HQ ! H i
q induced by the vertex eq.(2),

hH i
qj�qQjHQi = Fi ; (45)

(Mq)i is the mass of i-th state ((Mq)0 = Mq is the mass of ground state) and

��i = (Mq)i � (Mq)0 (46)

is the excitation energy of the i-th state; all form factors are taken at the zero recoil
point, where the meson produced in the transition Q! q is at rest in the rest frame
of HQ.

Comparing eqs. (44) and (43) we �nd that

X
i=0;1;:::

F 2
i

2(Mq)i
=
h �QQi
2mq

 
1� h~�2i

2m2
q

!
(47)

and X
i=1;:::

��iF
2
i

2(Mq)i
= �33

(�m)2

2m2
Qm

3
q

: (48)

Note that the elastic pole gives no contribution in eq. (48). Hence we conclude
that the residues of the excited states are proportional to �2. Transferring then all
excited states in eq. (47) to the right-hand side we observe that the square of the
elastic form factor receives corrections of order �2, both, of local nature and due to
excited states. Since all excitation energies and all residues are positive an obvious
inequality holds, X

i=1;2;:::

F 2
i

2(Mq)i
<

1

��1
�33

(�m)2

2m2
Qm

3
q

(49)
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where ��1 is the excitation energy of the �rst excited state. Therefore

h �QQi
2mq

 
1� h~�2i

2m2
q

!
� 1

��1
�33

(�m)2

2m2
Qm

3
q

<
F 2
0

2Mq

<
h �QQi
2mq

 
1� h~�2i

2m2
q

!
(50)

where F0 is the form factor of the \elastic" transition HQ ! Hq.
It is worth noting that the explicit form of the corrections, in particular to the

�rst sum rule eq.(47) and, therefore, the \local" terms / h~�2i in eq.(50) depend on
the structure of the \weak" current considered and refer to the case of the scalar
vertex. Should we use the vector current, coe�cients in sum rules would take a form
leading to F0 = 1 at mq = mQ in accord with the exact conservation of the vector
current for equal masses.

Concluding this section let us mention a convenient computational device. It
is helpful to let the initial quark mass go to in�nity and retain corrections only in
1=mq. In this way one removes nonperturbative corrections originating in the initial
state. The results referring to �nite mQ can be simply reconstructed at the very end.
On the other hand, in the opposite limit,mq � mQ one suppresses nonperturbative
e�ects in the �nal state; in this way it is convenient to obtain relations for static
hadronic quantities.

Similar sum rules at zero recoil in real QCD will be discussed in Sect. 3.2.

3 Real QCD

We proceed now to discuss the sum rules emerging in QCD for processes of the type
B ! Xcl�. It is clear that the approximation mb � mc � mb;c is not suitable in
this case; one still can reach the SV limit, however, by using the fact that q2 is not
necessarily zero in this transition (from now on q is the momentum of the lepton
pair). Indeed, if q2 is close to its maximal value,

q2max = (MB �MD)
2 ;

the D meson velocity is small. At the maximal value of q2 the velocity vanishes. It
is not di�cult to show that the velocity ~v = �~q=E is related to q2 as follows

1p
1� v2

� 1 =
(MB �MD)2 � q2

2MBMD

; (51)

whereas at the quark level

1p
1 � v2

� 1 =
(mb �mc)2 � q2

2mbmc

� � : (52)

For a sizeable fraction of events measured in the semi-leptonicB decays the values of
q2 are such that these events actually do belong to the SV limit (i.e. v is small). An
indirect proof of the relevance of the SV limit to the inclusive semi-leptonic decays
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of B's comes from the fact that about 65% of the total semi-leptonic rate is given by
the \elastic" transitions to D and D� [30]. The analysis below is carried out under
the assumption that the right-hand side in eq. (51) is small. Even though we do
not assume that mb � mc � mb;c both quarks, b and c, will be treated as heavy,
mb;c � �QCD.

Needless to say that the proximity of q2 to q2max can be realized in di�erent ways;
for instance, one can merely put ~q = 0 { this is especially convenient if we are
interested in the zero recoil point { or one can keep ~q 6= 0, but small and study the
terms proportional to ~q 2. This yields a practically realizable method of measuring
�(�) in the semileptonic decays B ! Xce�. We will consider �rst the simplest sum
rule for the total decay width analogous to eq. (47) in Sect. 2.5. Surprisingly, this
analysis produces a lower bound on the deviation from unity in the B ! D� elastic
form factor at zero recoil which does not quite agree with the previous estimates
obtained by a di�erent method [31] (see also Ref. [18]). The result is of a paramount
importance for experimental determination of jVcbj, the CKM matrix element, from
the exclusive decay B ! D�e�. Then we turn to an analog of Voloshin's sum rule
which appears to be a promising tool for extracting �(�).

The correct operator de�nition of � as the quantity relating the mass of the heavy

avour hadron to the heavy quark mass has been obtained in Ref. [14] analyzing
the heavy quark distribution function appearing in the SV limit for the �nal state
quark. Using eqs. (75) and (76) of that paper one can express it directly via the
temporal distribution function G(y) :

� =
2

3

Z
d�

�

Z
dt

2�
eit�

1

2MB

hB~v=0j�b(t; ~x = 0) �i e
i
R t
0
A0(t

0)dt0 �i b(0)jB~v=0i : (53)

It is therefore given by the n = �1 moment of the temporal distribtuion function G
and thus is not expressed in terms of a local operator (see also Ref. [25]). Its renor-
malization point dependence can easily be traced formally through the properties
of the path ordered exponent which, being the �eld operator, requires speci�cation
of the normalization point for the gauge �elds. In Sect. 2.4 we have illustrated
the renormalization point dependence using the saturation of the correlator by in-
termediate states, which is equivalent to calculating the correlator via dispersion
relations.

It is worth mentioning that eq.(53) has a transparent meaning in quantum me-
chanics. Using the quantum mechanical interpretation of the matrix element with
the path ordered exponent as explained below in Sect.3.1, we can express the cor-
relator function in eq.(53) as a sum over intermediate states,

hBj�b(t; ~x = 0) �i e
i
R t
0
A0(t

0)dt0 �i b(0)jBi =
1

2MB

X
n

jhBj�b�i bjnij2 � e�i(En�MB)t

and inegrating over x we arrive at

�

2
=
X
n

1

3

jhBj�b�i bjnij2
En �MB
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(here we use nonrelativistic normalization of states). It is easy to see that in simple
potential description of the heavy hadron as a two body system the sum on the right
hand side is given by the half of the mass of the spectator. Indeed,

�
X
n

jhBj~�~vjnij2
En �MB

represents the second order in v correction to the ground state energy, produced by
perturbation

�H = ~�~v :

On the other hand

H + �H = H(~� + ~v)� mv2

2
:

The eigenvalues of the Hamiltonian given by the �rst term on the right hand side
are the same as for the nonperturbed one, which leads to the relation stated above.

The operator de�nition of � suggested above also helps elucidate the problems
assocciated with the attempts to de�ne the pole mass at the level of �QCD from
a somewhat di�erent perspective. For to determine the mass of a hadron in terms
of mQ speci�ed in some way (say at normalization point � 1GeV ) one needs to
evaluate the matrix element in eq.(53) between the particular hadron. The pole
mass of the heavy quark then is to be understood as the corresponding matrix
element taken over the perturbative states jQi representing the isolated (but strongly
interacting!) quark Q, which persist in the perturbation theory. Such states do not
exist in reality, therefore one could only think that the operator object in eq.(53) is
not infrared sensitive so that \nonperturbative" e�ects occuring at the scale � �QCD

do not spoil it. On the other hand, purely phenomenologically we know that the
matrix elements for the operator in eq.(53) do di�er by values of order �QCD, say for
mesons and baryons. Therefore if the pole mass could unambiguously be de�ned at
the level of �QCD, one would have had masses of heavy 
avour hadrons degenerate
{ in a clear con
ict with experiment.

3.1 Sum rules at zero recoil: generalities

Our analysis of the B ! Xce� problem at zero recoil will parallel the corresponding
consideration carried out in the toy model of Sect. 2.5. The presence of spin is
a technicality which can easily be incorporated. As a matter of fact, all formulae
necessary for derivation of the �rst and the second sum rules exist in the literature;
we will borrow them from Ref. [10] as well as all relevant notations.

The point ~q = 0 represents zero recoil. Then the transition operator

T̂�� = i

Z
e�iqxdxTfjy�(x)j�(0)g ; (54)

for the b! c transitions,
j� = �c��b ;
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can be presented (in the tree approximation) in the form of the following expansion:

T̂�� = �b��(k0
0 +mc+ 6�) 1

(m2
c � k20)

1X
n=0

 
2k0�0 + �2 + (i=2)�G

m2
c � k20

!n
��b (55)

with
k0 = mb � q0:

The operator product expansion (55) is justi�ed provided that

�QCD � jmc � k0j:

In other words, the expansion (55) is a series in �QCD=(mc � k0). At the same
time, apart from the poles 1=(mc � k0) it obviously contains powers of 1=(mc + k0)
which develop \distant" singularities at k0 = �mc. We want these singularities
corresponding to the propagation of the antiquark �c to be indeed distant so that the
dispersion integrals we will be dealing with do not stretch up to these �c containing
states. To this end we must impose the second condition on jmc � k0j, namely

jmc � k0j � mc :

Once this condition is imposed we expand T̂�� in powers of (mc � k0)=mc and
�QCD=(mc�k0). The result is then ordered with respect to the powers of 1=(mc�k0).
The terms non-singular in (mc � k0) are irrelevant and can be discarded. Each
particular power 1=(mc � k0)n+1 in the expansion leads to a sum rule with the
weight function / (mc � k0)n.

Let us sketch the basic elements of the procedure in some detail. We start from
a series in 1=(mc � k0). The next step is averaging of T̂�� over the B meson state,

h�� =
1

2MB

hBjT̂��jBi: (56)

The hadronic tensor h�� consists of di�erent kinematical structures [4, 10],

h�� = �h1g�� + h2v�v� � ih3�����v�q� + h4q�q� + h5(q�v� + q�v�): (57)

Moreover, the invariant hadronic functions h1 to h5 depend on two variables, q0 and
q2, or q0 and j~qj. Since we put ~q = 0 only one variable survives, and only two of �ve
tensor structures in h�� are independent.

Each of these hadronic invariant functions satis�es a dispersion relation in q0,

hi(q0) =
1

2�

Z
wi(~q0)d~q0
~q0 � q0

+ polynomial (58)

where wi are observable structure functions,

wi = 2Im hi:
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This dispersion representation for the hi assumes, as usual, that the integral in
the right-hand side runs over all cuts that the transition operator may have. The
general structure of the cuts in the complex q0 plane is rather sophisticated; the
issue deserves a special discussion since it is not always properly understood.

The structure of the cuts of the functions hi(q0) is shown in Fig. 5. The part
accessible in the decay channel of the B mesons covers the interval [0;MB �MD].
The dispersion integral (58) can be written as a sum of two integrals,

hi(q0) =
1

2�

Z MB�MD

0

wi(~q0)d~q0
~q0 � q0

+
1

2�

Z
A

wi(~q0)d~q0
~q0 � q0

(59)

where the domain A consists of two subdomains, q0 < 0 (A1) and q0 > MB +MD

(A2). For real decays we are interested only in the �rst integral since the second
one, rather than describing the B ! Xce� decay, refers to other physical processes.
The subdomain A1 actually describes a similar b! c amplitude, yet with negative
q0, and can be called the lower cut. The integral over A2, on the other hand, will
be referred to as the integral over the distant cuts. Two kinds of problems are
encountered in evaluating the total dispersion integral. The �rst one emerges due
to the fact that for real decay kinematics one has only q0 > 0; therefore, say, for
calculating the total width one has not the integral over the whole physical cut, but
needs to consider the smaller interval without the subdomain A1. The corresponding
problems of separating the contribution of the same type of intermediate states, but
at di�erent values of q0 are usually referred to as \local" duality. In the context of
the present paper this is however not very important. For in our sum rules, from
purely theoretical point of view, it does not matter whether a particular transition
can be measured in real experiment, or not; e.g. the lower bounds we will discuss
rely only on the positivity of the corresponding transition probabilities.

There is generally another complication assocciated with the integral over the dis-
tant cuts (subdomain A2) corresponding to quite di�erent intermediate states. The
problem of isolating these contributions can be generically referred to as \global"
duality.

Both contributions thus represent a contamination for real decays. Fortunately,
this contamination is irrelevant for our analysis.

Indeed, to address the contamination due to the \lower" cut, let us choose the
\reference" point of q0 between the cuts (see Fig. 5), close to MB �MD,

q0 = MB �MD � � (60)

where � is a negative number,

��� �QCD ; ���MD:

When calculating the functions hi at the quark level from the operator product ex-
pansion we get a similar dispersion relation for the OPE coe�cients (with the meson
masses replaced by the quark ones). We then use duality concepts in identifying
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the physical relevance of these cuts. Local duality of QCD means that there is a
one-to-one correspondence between the part of the OPE coe�cients originating from
the lower cut and the corresponding hadronic contribution in the phenomenological
(hadronic) representation of hi. The validity of local duality can be veri�ed by itself
by choosing q0 close to the particular remote cut, the lower one for the case at hand.
Therefore, we can systematically discard the contribution of that cut simultaneously,
in the theoretical expression for hi and in the \phenomenological" saturation. In
this way we arrive at the relations

Z mb�mc

0
w
quark
i �nd� =

Z MB�MD

0
wi�

nd� � En; (61)

where � is the same variable as de�ned in eq. (60), but on the cut it is positive.
It represents the excitation energy. The left hand side of eq. (61) includes the
perturbative corrections as well as the power-like non-perturbative terms. The local
duality we have invoked to discard the contribution from this \lower" cut has an
accuracy of the type expf� Const �mc=�QCDg. It is worth emphasizing that it is the
ratio mc=�QCD, not mb=�QCD that enters. In the real world mc=�QCD numerically
is not so large, and since the constant in the exponent is unknown one may be afraid
of an insu�cient accuracy of the local duality for D's. At present theory provides us
with no clues as to the value of the constant in the exponential; the degree of possible
violations of the local duality should be established empirically. With this caveat in
mind we still believe that heavy quark expansion must work well in B ! Xce�.

Analogous analysis can be repeated almost verabatim for the contribution of
the distant cuts to address the question of \global duality". This duality is even
more transparent physically and is explicit in all perturbative calculations and for
calculations in \soft" external �elds. On the other hand, in principle, its accuracy
is generally determined by the same factor depending on mc, namely expf� Const �
mc=�QCDg.

After these more general remarks we return to the concrete calculations of the
theoretical part of the sum rules. To �nd wquark

i we take the discontinuity of the
transition operator eq.(55),

1

i
disc T̂�� = �2��b��(k0
0 +mc+ 6�)�

1X
n=0

1

n!
�(n)(k0 �mc)

(2k0�0 + �2 + (i=2)�G)n

(mc + k0)n+1
��b : (62)

Using the QCD equations of motion

�0b = � 1

2mb

(�2 +
i

2
�G)b ;

�0b = �~�~
 
0b+mb(
0 � 1)b (63)
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in the leading non-trivial approximation one then has (we suppress for simplicity the
indices � and � that mark the dependence of the moments En on the weak currents
considered)

1

2�
E0 = ��b��

 
1 + 
0

2
� ~�~


2mc

+
�2 + i

2
�G

2m2
c

!
��b+O(�3

QCD=m
3)

1

2�
(E1 � Eel

0 � �) = ��b��
 
1 + 
0

2
(��0 �

�2 + i
2
�G

2mc

)� �20
2mc


0 �
�0
0(�2 +

i
2
�G)

4m2
c

+

~�~


2mc

(�0 +
�2 + i

2
�G

2mc

)

!
��b+O(�4

QCD=m
3)

1

2�
En = ��b��

�
1 + 
0

2

�
(

1

2mb

� 1

2mc

)2 � (~�2 � i

2
�G) (��0)n�2 (~�2 � i

2
�G)+

+(
1

2mb

� 1

2mc

)
~�~


2mc

�0 �
n�2
0

i

2
�G

!)
��b+O(�n+3

QCD=m
3) (64)

where the last equation refers to n � 2; matrix elements over the initial hadron
state are assumed here on the rhs , and m generically denotes both mc and mb. In
the second equation we have introduced Eel

0 , which is the elastic contribution to E0

and the mass shift �

� = �� �0 = (MB �MD)� (mb �mc) (65)

that determines the di�erence in the threshold energy between real hadrons at zero
recoil and the quark mass di�erence, i.e. the direct zero recoil analog of � in eq.(16).
Note that this shift is irrelevant in the �rst sum rule for E0, and at n � 2 it enters
only when considering higher order power corrections.

The structure of the solution of eqs.(64) for the excitation function w(�) can
be deduced from the fact that w(�) is positive (for appropriate ��;�). The �rst
equation tells us that the sum of all probabilities equals unity up to small corrections
� O(1=m2). On the other hand, higher moments all start with the terms of order
�n
QCD �(�QCD=m)2. Because the scale for the excitation energies �i is given by �QCD

5

one immediately concludes that the probabilities of transitions to the excited states
all scale like 1=m2 with the heavy quark masses. To saturate the �rst sum rule
one then needs state(s) which do not contribute to the higher moments En and are
produced with practically unit probability; the only way to satisfy it is to have the
�nal states, D and D� with masses

MB � (mb �mc)

5E�ectively the same refers even to the thresholds assocciated with the D(�) +pion(s) states in
the chiral limit, which strictly speaking have no such excitation gap. This holds true owing to the
fact that the corresponding amplitudes are proportional to the pion momentum; in reality they
can produce only chiral logs and do not change powers of mass in the analysis, see Ref. [38].
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up to corrections that vanish in the limit mq;mQ !1. Moreover, their transition
amplitudes are to be unity up to terms inversely proportional to the square of the
heavy quark masses { a fact observed originally by M.Shifman and M.Voloshin [22]
and now known as Luke's theorem [32]. In this way one obtains the statement of

avour symmetry in the spectrum of hadrons. More speci�cally, considering the
zeroth component of the vector current one selects the transitions to D whereas for

i
5 vertices only D� contributes; thus one can derive separate relations for both
states and amplitudes.

Considering the second of eqs.(64) corresponding to n = 1, one can infer the
following: the contribution of excited states leads only to the terms of order �3

QCD

and they can be discarded for contributions of order �2
QCD=m. On the other hand,

the rhs does contain terms of this order: for example for the vector current (�� =
�� = 
0) they are given by

(
1

2mc

� 1

2mb

)�b(~�2 � i

2
�G)b : (66)

Because the correction to E0 = 1 starts with terms quadratic in 1=m, this relation
unambiguously determines the 1=m shift in the mass of heavy 
avor hadrons, B and
D in the case under consideration. Therefore the leading, 1=m power correction to
the e�ective Lagrangian of heavy quarks is obtained; considering, for example, the
transitions induced by the axial current one obtains the known relation between the
hyper�ne splitting and the matrix element of the chromomagentic operator.

It is then easy to obtain the general expression for the function w(�) as it emerges
via its momentsEn. The inelastic part of w(�) appears at the 1=m2 level and is given
by the Fourier transform of the time dependent correlation functions of the leading
power correction operators in the e�ective Lagrangian:

�2w(�) ' (
1

2mb

� 1

2mc

)2�

Z
dt

2�
eit�hBj�b(t; ~x = 0) ��(~�

2 + ~� ~B)T ei
R t
0
A0(t

0)dt0 (~�2 + ~� ~B) �� b(0)jBi (67)

where B denotes the chromomagnetic �eld. Let us note that the explicit terms
containing ~�~
 in eq.(64) generate operators including also the chromoelectric �eld;
in reality they appear to cancel the e�ects due to the propagation of the lower com-
ponents of the quark �elds caused by the chromoelectric operator contained in the
full Lorentz scalar combination �G; in the �nal expression only the chromomagnetic
part survives in the leading approximation.

It is worth clarifying at this point the physical meaning of the path ordered
exponents appearing in the OPE in higher orders. Generically we obtain expressions
of the form

hHbj�b(x) o1 P ei
R x
0
A�(x

0)dx0� o2 b(0)jHbi ; x2 > 0 : (68)
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One can rewrite `P exp' introducing an auxilliary \ultraheavy" quark Q �eld using
the operator relation

P ei
R x
0
A�(x

0)dx0� = Q(x) �Q(0) e�imQjxj (69)

where the mass mQ ! 1 and in particular is assumed to be much larger than
the renormalization point (ultraviolet cuto�) in the theory (the nonrelativistic nor-
malization of Q is used). Note that mQ is the bare mass of this ultraheavy quark
appearing in its bare Lagrangian. The c-number exponential factor can be conve-
niently removed if one factors out the \mechanical" momentum of this auxilliary Q
�eld to arrive at the �elds Q0 routinely used in HQET; this is done identifying the
heavy quark velocity v with the classical velocity of a particle moving from point 0
to x:

Q(z) = e�imQvzQ0(z) ; v� �
x�

jxj :

With these notations any nonlocal matrix element of the type eq.(68) can be rewrit-
ten as

hHbj�b(x) o1 P ei
R x
0
A�(x

0)dx0� o2 b(0)jHbi = hHbj�b o1Q0(x) �Q0(0) o2b(0)jHbi =

=
X
n

hHbj�b o1Q0(x)jni � hnj �Q0(0)o2b(0)jHbi ei(pHb�pn)x : (70)

The second expression in this equation is manifestly gauge invariant. Moreover, in
the third representation we have re-expressed it as a sum over the intermediate states
that can be created from Hb by the current �boQ, that is, the corresponding states in
the true e�ective theory with in�nitely heavy quark Q instead of b (it clearly does
not matter at this point whether the initial, b quark is considered as heavy, or with
a �nite mass).

Eq.(70) clearly reveals which meaning is to be attributed to nonlocal correlators
of operators with path exponents in a quantum mechanical picture. It shows one
that he is actually dealing with the correlator of the two currents of the type �bQ
and �Qb. Therefore in the intermediate state one merely has { instead of real beauty
hadrons { hadrons propagating that contain an in�nitely heavy quark without any
�nite mass corrections. To phrase it di�erently, we come back to the similar b! c

transitions but e�ectively remove all 1=mk
c corrections from the propagation between

the two vertices.
If one uses this physical interpretation, eq.(67) acquires a very transparent mean-

ing: it is nothing but the second order term in the expansion due to the perturbation
given by the operator

(
1

2mb

� 1

2mc

) �c (~�2 + ~� ~B) b (71)

in the e�ective theory. The Fourier transform of the Green function consists of
�-functions (for discrete intermediate states) residing at energy values �i de�ned
by the mass di�erences MBi �MB between the ground and excited states. This
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equation expresses the fact that the transition amplitudes at zero recoil are given
by the matrix elements of this operator between the initial and intermediate state.
Apart from this non-local e�ect, there are also local terms renormalizing the weak
current, given by the �rst sum rule. The latter can be viewed as the power terms
in the commutator of the currents of the e�ective theory due to the �nite values of
the heavy quark masses. It is not di�cult to trace the straightforward similarity
between the derivation given above and the analysis of the heavy quark distribution
function in the SV limit carried out in Ref. [14] that lead to an analogous temporal
function. In that case, however, inelastic excitations appeared proportional to the
velocity of the �nal quark, and it was the correlator of the space-like momentum
operators ~� that emerged.

Let us make a few comments. Obviously, one can, in principle, calculate higher
order power corrections to the sum rules eq.(64). It is possible to see that in what
concerns the inelastic contributions to the structure function, w(�) will order by order
reproduce the successive terms of the ordinary quantum mechanical perturbation
theory corresponding to both next order iterations of the leading terms as well as to
perturbations representing subleading power operators in the e�ective heavy quark
Lagrangian.

Similarly, one can consider the sum rules even in the case of nonzero recoil when
~q does not vanish. Most simply it is done in the SV limit j~q j � mq when one can
expand in j~vj ' j~q j=mq. In the leading power approximation and keeping terms
quadratic in j~vj it has been done in Ref. [14] and the leading power corrections are
incorporated in previous sections. Generally, one can go beyond the small velocity
kinematics as long as j~q j=mq does not scale with the mass. However, in this case
one can obtain only a limited number of symmetry relations between di�erent spin
amplitudes because the unknown function of the velocity determined by the in�nite
series of the matrix elements of powers of operators �q appears already in the leading
1=m approximation.

To conclude this section, let us say a few words clarifying why this general
analysis based on the sum rules for the heavy 
avor transitions is thought to be
important although it may seem not to lead immediately to new results beyond the
picture of standard perturbation theory in quantum mechanics.

First, we shall see in subsequent sections that this approach allows one to ob-
tain useful bounds on the transition amplitudes and on the `static' matrix elements
governing nonperturbative corrections.

Secondly, it demonstrates in a transparent and unambiguous way the necessity to
introduce the infrared renormalization point for addressing nonperturbative e�ects
and clari�es both its physical meaning and the qualitative trend of the dependence on
�. This is important in view of the existing negligence of this problem in applications
of HQET.

Last, but not least, we clearly see here that such assumptions about QCD as the
validity of concepts of global duality discussed above, that sometimes are naively
thought to be speci�c only for the OPE-based approach for inclusive transitions, are
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in reality the most general requirement inherent in any consistent consideration. For
if for some particular physical reason the quark-hadron correspondence used above
were modi�ed { for example there were a sizeable \leak" in dispersion integrals from
distant cuts, it would immediately lead to new contributions in the rhs of the sum
rules; this would result in physically observable corrections not contained in the
expansions obtained in HQET.

3.2 A bound on the form factor at zero recoil from the sum

rules

We consider, for de�niteness, transitions of the type B ! D� and B ! excitations
of the vector mesons. Practically they are most important in the exclusive approach
to the problem of determination of jVcbj. These transitions are induced by the axial-
vector current

A� = �c
�
5b :

It is quite obvious that it is most convenient to focus on the spatial component of
this current.

The T -product

h�� = i

Z
d4xe�iqx

1

2MB

hBjTfAy
�(x)A�(0)gjBi (72)

is calculated, up to O(�2
QCD) terms [10, 11, 12]; this accuracy is su�cient for our

purposes. In general the amplitude h�� is decomposed into a sum of �ve terms, see
eq. (57). For the spatial components of the current we need to consider only h1.

To get the �rst sum rule in the zero recoil point we put

~q = 0 :

In this problem the lowest lying state produced in the decay is D�; therefore the
expansion parameter � is naturally introduced as follows:

� = MB �MD� � q0 ; (73)

analogously to what was done in Sect. 2.5. If our aim is to obtain the �rst sum rule,
to accuracy O(�2

QCD), the de�nition (73) can be replaced by a simpli�ed expression,

�! �m� q0 :

As previously, we will expand h1 in �QCD=� and in �=mQ;q.
Eq. (A.1) of Ref. [10] implies that

�h1 =
1

�
� �2G � �2�

2mb

�
1

3
� mc

mb

�
1

�(2mc + �)
+
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�
4

3
�2Gmb � (�2G � �2�)q0

�
1

�2(2mc + �)mb

; (74)

where �2G and �2� parametrize the matrix elements of the chromomagnetic and kinetic
energy operators,

�2G =
1

2MHQ

hHQj �Qi

2
���G

��QjHQi ; �2� =
1

2MHQ

hHQj �Q~�2QjHQi :

The chromomagnetic parameter is known experimentally:

�2G '
3

4
(M2

B� �M2
B) = 0:37GeV2 :

Expanding in �QCD=� and in �=mb;c and keeping only the term linear in 1=� we
�nd

� h1 !
1

�

"
1 � 1

3

�2G
m2

c

� �2� � �2G
4

 
1

m2
c

+
1

m2
b

+
2

3mcmb

!#
: (75)

The sum rule stemming from eq. (75) obviously takes the form

F 2
B!D� +

X
i=1;2;:::

F 2
B!excitations

=

"
1 � 1

3

�2G
m2

c

� �2� � �2G
4

 
1

m2
c

+
1

m2
b

+
2

3mcmb

!#
; (76)

where the sum on the left-hand side runs over all excited states and all form factors
are taken at the zero recoil point. This is a perfect analog of eq. (47). The form
factor B ! D� at zero recoil is de�ned as

hBjAijD�i =
q
4MBMD� FB!D� �i :

If all terms O(�2
QCD) are switched o� higher states cannot be excited at zero

recoil { only the elastic B ! D� transition survives { and we arrive at the well-
known result that

FB!D� = 1; (zero recoil) ;

the statement of the heavy quark (or Isgur-Wise [33]) symmetry �rst noted in the
SV limit in Ref. [22] (see also [34]). Including O(�2

QCD) terms we start exciting
higher states; all transition form factors squared are proportional to �2

QCD=m
2.

Simultaneously the form factor of the elastic transition shifts from unity.
The power correction on the right-hand side is negative. What is crucial is the

fact that the contribution of the excited states is strictly positive. Transferring them
to the right-hand side we arrive at the following lower bound

1� F 2
B!D� >

1

3

�2G
m2

c

+
�2� � �2G

4

 
1

m2
c

+
1

m2
b

+
2

3mcmb

!
: (77)
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Thus, we �nd that the (absolute value of) the deviation of the elastic form factor
FB!D� from unity at zero recoil is de�nitely larger than

M2
B� �M2

B

8m2
c

� 0:035 :

As a matter of fact, the second term on the right-hand side of eq. (77) is also
positive, �2� > �2G. We will rederive this inequality within the framework of sum
rules itself in the next section. Previously it was obtained in this form by M.Voloshin
[35] who extended the quantum-mechanical argument of Ref. [14] applicable at a low
normalization point. This inequality is in perfect agreement with the most re�ned
QCD sum rule calculation of �2� [36], according to which

�2� = 0:54 � 0:12 GeV2 :

If this estimate is accepted then the second term in eq.1-F amounts to � 1=2 of
the �rst one, and the lower bound for the deviation becomes 1 � F 2

B!D� > 0:1.
The actual deviation is probably larger by � 0:1. First, the sum rule derived above
neglects perturbative �s corrections. The �rst order correction to the elastic form
factor was calculated in Ref. [22]. If in zeroth order in �s the �b
�
5c axial-vector
vertex at zero recoil is unity, the �rst order correction renormalizes it to

�A = 1 +
�s

�

�
mb +mc

mb �mc

ln
mb

mc

� 8

3

�
:

The renormalization-group improvement of this calculation (including the leading
and the �rst subleading logs of the ratio of mb=mc) has been carried out in Ref.
[37]. For the axial-vector current the perturbative correction is negative, so that
unity in eq. (76) is replaced by 0.96. Then, the contribution of the excited states
in eq. (76) is strictly positive, and this also reduces F 2

B!D�
. This contribution may

be as large as, roughly, the power correction on the right-hand side. An estimate of
the excited state contribution supporting this statement is given in Ref. [38] where
a more detailed numerical discussion of all corrections is given. Notice that in our
approach the excited state contribution replaces a non-local contribution of Ref. [39].

We conclude that 1�F 2
B!D�

is de�nitely larger than 0.1, somewhat beyond the
window obtained in Ref. [31]. The phenomenological impact of this observation is
discussed in Ref. [38].

Let us note that in order to get the second sum rule analogous to eq.(48) we would
need to know O(�3

QCD) terms both in the transition operator and in the relation

between �M and �m. In T̂�� these terms are due to the four-quark operator while
in �M ��m they come from two sources: a local contribution from the four-quark
operator and a non-local one analogous to �33 of Sect. 2.5. Classi�cation of O(�3

QCD)
terms in M �m is discussed in Ref. [39].

In a very similar way one can obtain the bound and estimate for the vector form
factor of the B ! D transition FB!D at zero recoil. Here only the timelike com-
ponent of the current contributes, and for this reason the full semileptonic decay
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amplitude is proportional to the lepton masses. Therefore this mode is not advan-
tageous; the corresponding formfactor is measurable (in principle) at zero recoil in
the B ! D+ ��� decays. Taking �� = �� = 
0 we obtain for this case the sum rule

F 2
B!D +

X
i=1;2;:::

F 2
B!excit = 1 � �2� � �2G

4

�
1

mc

� 1

mb

�2
: (78)

Perturbative corrections also di�er and now look as follows [22]:

1 +
�s

�

�
mb +mc

mb �mc

ln
mb

mc

� 2
�

: (79)

The corrections in the case of the vector formfactor obviously vanish at mb = mc,
as they have to in view of the exact conservation of the current in this limit. Nu-
merically therefore they are expected to be smaller for vector transitions than for
axial ones.

It is worth mentioning that the excitation probabilities entering the sum rules
eq.(76) and eq.(78) are generated separately by the axial or the vector current,
respectively, but not by the V �A current that directly produces the experimental
widths. Actually at zero velocity transfer the axial and vector currents cannot
interfere. Therefore for the V �A semileptonic transitions into massless leptons one
has just to add to eq.(76) (assuming that no �nal state identi�cation is attempted)
the contribution of the �c
ib current. The sum rule for this current is obtained in the
next subsection. Combining the two sum rules one gets

F 2
B!D� = �2A �

�2� � �2G
3mbmc

�
Z
�>MD��MD

d�
w1

2�
(80)

where the last term representing the inelastic contribution is expressed via the dif-
ferential semileptonic width at zero recoil:

w1

2�
=

8�2

G2
F jVcbj2q20j~qj

� d
2�SL

d~q 2 dq0
j
~q=0; q0=MB�MD�E

(81)

(q is the momentum of the lepton pair in the process). Eq.(80) is much less useful
as an upper bound because the main part of the correction to the elastic formfactor
is to come from the presently unknown contribution from the excitations.

3.3 Lower bound on �2�

Reversing the line of reasoning used to derive the upper bound on the formfactors, we
can exploit the very same idea to get a constraint on the matrix elements �2G and �2�.
At zero recoil there are only two independent structure functions for the correlator
of the V �A currents; similar functions can be introduced for other weak vertices as
well. Choosing a particular current one projects out a certain combinations of the
structure functions. It is important that for the Hermitian conjugated currents in
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the two weak vertices one gets a de�nitely positive structure function expressed as a
sum over certain transition probabilities. If an appropriate channel is found where
the elastic peak is kinematically absent, the theoretical side of the corresponding
sum rule will contain no unity term, and start with the leading 1=m2 corrections
given just by a linear combination of �2G and �2�. The \phenomenological" side, a
sum over the excited states, is positive-de�nite. In this way we arrive at a constraint
on the linear combination of �2G and �2� at hand.

It is not di�cult to �nd a speci�c example. Indeed, let us consider the vec-
tor current, �q
�Q, and in particular its space-like components. It is obvious that
�(1=3)hV Vii = �hV V1 is populated only by the excited states { if the initial state HQ

is the ground state pseudoscalar, the �nal one, H�
q , must be the axial-vector meson,

non-degenerate with HQ in the symmetry limit. (In the quark model language one
would say that H�

q is a P -wave state.) Again, using the results of Ref. [10] we �nd

� hV V1 (q0) =
1

�

"
�2� � �2G

4

 
1

m2
Q

+
1

m2
q

� 2

3mQmq

!
+
�2G
3

1

m2
q

#
: (82)

The expression in the square brackets is equal to the sum over excitations:

"
�2� � �2G

4

 
1

m2
Q

+
1

m2
q

� 2

3mQmq

!
+
�2G
3

1

m2
q

#
=
X
i

F 2
HQ!H�

q
; (83)

and, hence, is always positive, for any values of mQ and mq. Being interested in
the \static" properties of the initial state only, it is convenient, according to the
comment in the end of Sect. 2, to consider the theoretical limit mq � mQ where
only initial state e�ects survive 6. Requiring the positivity of eq.(82) at mq � mQ

we conclude that
�2� � �2G = Const �

X
i

jFHQ!H�

q
j2 (84)

and, therefore,
�2� > �2G : (85)

This is literally the same inequality that has been obtained previously [35] in the
quantum-mechanical language along the lines suggested in Ref. [14]. The argu-
ment presented above can be viewed as a consistent and transparent �eld-theoretic
reincarnation. According to the general discussion of Sect. 2.4 in reality one is to
introduce the cuto� in the \phenomenological" integral of the decay probabilities
from the upper side of excitation energies �. It is most important that the integral
in the rhs of eq.(84) X

�i��

jFHQ!H�

q
j2

6The very same bound can be obtained considering, say, the correlator of two i
5 currents, or
even merely when both vertices are 1� 
0. In either case one gets directly the di�erence �2� � �2G
with the coe�cients 1=m2

c and (1=mc � 1=mb)
2, respectively.
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is positive for any normalization point �, and therefore ensures the validity of the
inequality eq.(85) for operators normalized at arbitrary values of �, provided the
renormalization point is consistently introduced in this particular way. For high
enough � the contribution of the excited states is given by perturbative expressions
and the � dependence is explicitly calculable; of course for very large � the inequality
becomes trivial. We shall discuss it in more detail in Sect. 4.

It is instructive to note that the zero recoil sum rule for the Vi � Vi transitions
(or similar ones where there is no elastic peak) provides us with the most direct way
to determine the evolution of the kinetic energy operator. One proceeds here along
the same way of reasoning as has been outlined in Sect. 2.4 where we considered the
small velocity kinematics with ~q 6= 0. In this case the elastic peak identically vanishes
for purely kinematic reasons. Therefore the only possible impact of introducing the
infrared normalization point via, say, the gluon mass can emerge (at least to lowest
nontrivial order in the strong coupling) from the kinematic constraint on the emitted
gluon.

To use this way to determine the evolution of ~�2 one needs to calculate the
perturbative probability to emit the gluon at zero recoil 7. The corresponding am-
plitude is clearly given by the Thompson scattering amplitude of nonrelativistic
particle (with obvious modi�cation due to di�erent coupling constants in the case
at hand), which is the same for real spinor and hypothetical scalar quarks 8. The
exact calculation of this perturbative contribution to the dispersion integral in the
sum rule eq.(83) is trivial; accounting for the explicit factors we obtain

d

d�2
�Q (i ~D)2Q ' 4�s(�)

3�
�QQ (86)

where we assumed mq = mQ to obtain the exact coe�cient 9. This result coincides
with eq.(34).

Throughout this paper we phrased our discussion of real QCD in terms of the
transitions where initial states were heavy 
avor mesons, namely B. It is clear that
exactly the same reasoning can be applied for the transitions of heavy baryons, for
example when the initial hadron is �b. The matrix elements, of course, are di�erent.

7It indeed de�nes renormalization of only the kinetic operator, not of the chromomagnetic
one. To see that one can, for example, consider the sum rule applied to �b decays where the
chromomagnetic operator vanishes for any renormalization point. On the other hand, by de�nition,
perturbative mixing does not depend on the particular state and the matrix element of the leading
operator �QQ is the same in �b as in B. In other words, when taking matrix element in eq.(82)
over the perturbative states of quasifree heavy quarks h�2Gi = 0.

8This ensures that such de�ned renormalization does not depend on the heavy quark spin,
which seems to be mandatory in the e�ective low energy theory.

9This is necessary to have the dispersion integral in full QCD well behaved asymptotically; at
mq 6= mQ the current �q
�Q is not conserved and asymptotic behavior of the amplitude deteriorates
re
ecting the nontrivial commutator of currents; the integral over asymptotically large momenta
can get then additional �2 dependence. From practical viewpoint the change in the coe�cient is
minor, by a factor 4=3 only in the whole range of the quark mass ratio.
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In particular, the expectation value of the chromomagnetic operator vanishes for �b.
Moreover, contrary to the meson case no non-trivial lower bound on the kinetic term
emerges. Therefore it is naturally to expect smaller deviations from the symmetry
limit for both vector and axial formfactors in baryons than for mesons.

An analysis of corrections to FB!D� resembling our in spirit, but not technically,
has been carried out recently in Ref. [39]. There 1 � FB!D� is expressed in terms
of some local and non-local expectations values; the latter are unknown. In our
analysis the role of the non-local expectation values is played by the contribution
of the excited states. What is crucial, this contribution is always positive. In [39]
1 � FB!D� is found to be positive (good!), and a numerical estimate is presented
relating 1 � FB!D� to �2�, a parameter that is somewhat more uncertain than �2G.
As a matter of fact, the numerical values of �2� accepted in [39] under the in
uence
of some recent claims are in contradiction with the inequality (85).

3.4 The second sum rule at ~q 6= 0; measuring �(�)

If at ~q = 0 the second sum rule requires the knowledge of O(�3
QCD) terms, at ~q 6= 0

(i.e. �QCD � j~q j �MD) a non-trivial prediction, an analog of Voloshin's sum rule
[23], arises to order �QCD. Higher order corrections will be brie
y discussed later.
We need to consider the average value of q0max�q0. This quantity is related to M2

Xc
,

the average invariant mass squared of the hadronic system produced 10. Indeed,

M2
Xc

=M2
D + 2MB(q0max � q0) ; q0max =

M2
B �M2

D + q2

2MB

: (87)

All elements necessary for the derivation of the sum rule are available; we will
use the expressions for h�� obtained in [10] including terms O(�2

QCD). The basic
idea is the same as that demonstrated in Sect. 2.4 in the toy model: to order �QCD

in the SV limit the weighted integral over the excited states is proportional to �(�).
If in the previous section we considered the point of no recoil; now we have to shift
from this point and consider terms proportional to the square of the c quark velocity.
The SV limit will be ensured by choosing j~q j �MD.

Let us assume �rst that all structure functions in eq. (57) are known separately.
Then it is most convenient to consider

(�1=3)hii � �h1 :
If we are aimed at e�ects linear in �QCD all �2� and �2G corrections can be ne-

glected and (see eq. (A.7) of Ref. [10])

� h1 = 2
mb � q0

(mb +mc � q0)(mb �mc � q0)� ~q 2
; (88)

10The corresponding analysis of the average invariant hadronic mass presented in Ref. [4] was
incorrect, see Ref. [41]. The average invariant mass of the �nal state hadrons is not given directly
by local operators at the level of nonperturbative corrections, contrary to claims in Ref. [4].
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where the hadronic tensor considered is that induced by the V � A current. The
parameter �, the distance from the pole, must be de�ned now as

� = MB �MD � ~q 2

2MD

� q0 = mb �mc � ~q 2

2mc

+
~q 2

M2
D

�

2
� q0 + ::: : (89)

Notice that working to �rst order in �QCD formally there is no need to di�erenti-
ate between the masses of D and D�; this di�erence actually can give us an idea
about the numerical impact of 1=m2

c corrections. If the second order corrections are
included it becomes important.

Next, we express the right hand side of eq. (88) in terms of � and expand in
1=� and �=mq. The term of interest is O(�=�2). There is only one such term in the
expansion,

� h1 = :::+
~q 2

M2
D

�

2

1

�2
+ ::: : (90)

This result is to be confronted with the hadronic state representation for �h1. In
this way we obtain

1

2�

Z q0max

q0max��
(q0max � q0)dq0w1 =

~q 2

M2
D

�(�)

2
(91)

where ~q is supposed to be �xed (j~q j �Mq), and w1 = 2Imh1 is a structure function
that is measurable, in principle.

To reiterate, we introduce a normalization point � in such a way that all frequen-
cies smaller than � can be considered as \soft" or inherent to the bound state wave
function; at the same time �s(�) has to be su�ciently small for the perturbative
expansion in �s(�)=� to make sense. We then draw a line at q0 = q0max � � (the
picture is similar to that of Fig. 4, with d�=dE replaced w1 and E by q0). The inte-
gral eq.(91) taken over the range q0max � � to q0max represents (v2=2)�(�) modulo
corrections of higher order in v and in �QCD. The running mass is then de�ned as
mb(�) = MB � �(�).

Practically it may be not so easy to separate di�erent structure functions from
each other. A similar prediction can be given for double di�erential distribution in
the semileptonic decay.

Using eqs. (8), (A.7) and (A.8) from Blok et al. [10] one arrives at

Z
(q0max � q0)dq0

d2�

dq0dq2
= �

(�M)2 � q2

2M2
B

d�

dq2
(92)

plus terms of the second and higher order in �. Here

�M = MB �MD ;

d�

dq2
=

G2
F jVcbj2
8�3mb

(
q2

m2
b +m2

c � q2

2mb

j~q j+ 2

3
mbj~q j3

)
; (93)
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where

j~q j = (m4
b +m4

c + q4 � 2m2
bq

2 � 2m2
bm

2
c � 2q2m2

c)
1=2

2mb

= mc(2� + �2)1=2 : (94)

Equation (92) is valid for arbitrary values of q2, not necessarily close to the maximal
value q2max = (�M)2. In deriving this expression we have used the fact that to order
�QCD �M = �m where �m = mb �mc. In the SV limit, when the right hand
side of eq. (51) is small, the results for the radiative corrections obtained in the
previous section are directly applicable to the semi-leptonic decays. Indeed, the
gluon can be emitted (absorbed) either by the color charge of the c quark or by its
magnetic moment. Moreover, there is no interference { the gluon emitted by the
magnetic moment has to be absorbed by the magnetic moment. It is not di�cult
to check that the maximal value of the gluon momentum k � mc� and, as long as
we are retaining terms of order � only, we can disregard the gluon interaction with
the magnetic moment. Then we are left with the charge interaction only which is
the same for spin-0 bosons and spin-1/2 fermions. As a result, the expression for
the radiative correction obtained previously is modi�ed in a minimal way, only due
to a slightly di�erent kinematics, and we get

Z q0max

p
q2

(q0max � q0)dq0
d2�

dq0dq2
=

=

(
�(�) +

16�s
9�

Z q0max��

p
q2

dq0
(q20 � q2)3=2

(q20max � q2)1=2
1

2�

M2
B

M4
D

)
� �MD

MB

d�(0)

dq2
(95)

plus terms of order �2 and higher. In theO(�s) term in eq. (95) we do not distinguish
between the quark and meson masses.

Thus, the sum rules eq.(91) or eq.(95) can be used to elucidate what is actually
meant by the heavy quark mass. This question is rather subtle since the heavy
quark mass is a purely theoretical parameter which is not directly measurable. On
the other hand, it is a very important parameter, crucial in a wide range of questions.

The sum rules (91) or (95) express � in terms of the integral over the physically
observable quantities. Therefore, it is tempting to say that we, thus, have a suitable
de�nition of � and, through this quantity, the heavy quark mass. Of course, both
of them depend explicitly on the renormalization point.

In a similar manner one can use an appropriate sum rule to determine the kinetic
energy operator. For example, it can be extracted in a model-independent way from
the sum rule similar to eq.(33) if the double di�erential measurements are used and
one can select small velocity events:

�2�(�) = 3��1v�2
Z q

phys

0max

q
phys

0max
��

d2�

dq0dq2
(q0max � q0)

2 dq0 (96)
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where the \quark velocity" v, the normalization � and the the maximum energy
release qphys0max

are now de�ned as

v�2 =
(m2

b +m2
c � q2)2

(m2
b +m2

c � q2)2 � 4m2
bm

2
c

qphys0max
=

M2
B +M2

D � q2

2MB

� =
Z q

phys

0max

q
phys

0max
��

d2�

dq0dq2
dq0 : (97)

The integration in eq.(96) must run over the energy release q0 close to the parton
values q0 �< mb�mc�� whereas the integration over q2 must include only the region
of small v. The normalization in eq.(97) must be calculated over the same region,
of course. This determines the value of �2� normalized at point �.

On the contrary, selecting events with minimal q2 one could try to invoke an
approximation neglecting the deviation of the distribution function from the light
cone one [14, 17, 18]. However this seems not to be safe enough from the theoretical
side. The normalization point dependence would enter then in a more complicated
way.

4 Impact of the perturbative evolution of e�ec-

tive operators

In this section we shall brie
y discuss the practical modi�cations that arise in the
calculation of nonperturbative e�ects in heavy 
avour decays if one accounts for
the normalization point dependence (in the infrared region) of the corresponding
operators. Although this question is rather standard, we feel the need to dwell on
it in view of the apparent confusion taking place in applications of heavy quark
expansions existing in the literature.

It is well understood (see, for example, the recent discussion in Ref. [25]) that the
consistent incorporation of nonperturbative e�ects in the framework of the Wilson
OPE procedure requires introduction of the real separation of the contributions of
momenta below and above a certain normalization point �. The transparent physical
necessity of such separation was demonstrated above on a few simple examples. The
low momentum physics is then attributed to the matrix elements of the operators
whereas the high momentumpiece enters Wilson coe�cients; both therefore depend
explicitly on � in such a way that observables are �-independent.

This fact is always taken into account when the corresponding operators un-
dergo logarithmic renormalization, for an obvious reason: the Feynman integrals
determining the coe�cient functions in this case logarithmically diverge and one
merely cannot put �, the infrared regularization, to zero. In calculating the power
corrections to heavy 
avour decays another situation can typically arise: when the
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leading operator has zero (logarithmic) anomalous dimension, but there are sublead-
ing operators of higher dimension that mix with the lower dimensional operators.
It is a rather common situation for the case of zero recoil (or small velocity) transi-
tions and for observables related to the inclusive widths. In this case the coe�cient
functions of the leading operators possess a safe infrared limit; they are then usually
calculated without an infrared cuto�, which is equivalent to setting the normaliza-
tion point to zero. This procedure is known to lead, from a theoretical perspective, to
grave problems even within the perturbative expansion itself in higher orders, which
manifest themselves, for example, as infrared renormalons (see, e.g. the recent dis-
cussion in Ref. [25] and references therein to the original publications). However
to �nite number of loops, and in particular for typically existing one or two loop
calculations, this kind of problems may not be noticed.

It is obvious, on the other hand, that this naive approach to perturbative cal-
culation of Wilson coe�cients contains physically (but not necessary numerically
relevant) 
aw in that it leads in general to a double counting of some contributions.
Let us take, as an example, the typical calculation of the corrections to the zero
recoil formfactor of B ! D(�) transition; another example is the calculation of the
corrections to the total semileptonic B decays discussed in detail in Ref. [25]. The
usual procedure for dealing with such problems is to take, say, known expressions for
the one loop perturbative corrections for the particular quantity and add to them
nonperturbative corrections expressed in terms of certain matrix elements. In this
way, for example, the perturbative correction �A to the the axial current �c
�
5b was
simply added to the nonperturbative contribution of eq.(77). It is clear however that
the nonperturbative contribution per se takes care of all relevant gluon exchanges
with momenta below �; still the one loop Feynman integral for the radiative correc-
tion has some (small) piece coming from very low momenta { that strictly speaking
must be excluded.

It is natural to expect that, in reality, the extra contribution in the perturbative
integral is numerically smaller than the nonperturbative (\condensate") e�ects and,
therefore, the error made in such procedure is not very important for a reasonable
choice of normalization point �. This assumption constitutes in fact the conceptual
grounds for using the so-called \practical version" of OPE in QCD where such e�ects
are neglected. It is not, however, an obvious a priori property of QCD and is to
be cross-checked in any new situation. In principle one should calculate the Wilson
coe�cients by evaluating Feynman integrals with an explicit infrared cuto� in the
propagators to avoid these problems.

What if we still use in practice concrete expressions that e�ectively correspond
to � = 0 ? Let us consider for example the rhs of the sum rule eq.(76) with the
perturbative corrections added:

F 2
B!D�

+
X

i=1;2;:::

F 2
B!excit = �2A �

1

3

�2G
m2

c

� �2� � �2G
4

 
1

m2
c

+
1

m2
b

+
2

3mcmb

!
; (98)

and neglect for simplicity the spin of the heavy quark, so that only the kinetic energy
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operator ~�2 will represent non-perturbative corrections. Then, in the consistent
procedure, calculating the perturbative correction factor �A we need to introduce
the infrared renormalization point �� mc. In practice, instead, one can analyze the
dependence on � of the matrix element of the operator ~�2 { for the whole expression
is �-independent!

Using only this observation, we can conclude that the dependence of the pertur-
bative factor �A on � is quadratic. Say, in the one loop approximation it is to take
the form

�A(�=mc) = �A(0) + c�A
�s

�

1

m2
c

�2 +O(�3=m3
c) ; (99)

no term linear in � can appear because the �rst subleading operator has a dimension
higher by two units than the leading one, �QQ. Moreover, the coe�cient c�A must
match the one determining the powerlikemixing of operator �Q~�2Q with �QQ, eq.(34):

d

d�2
�Q (i ~D)2Q = ��(�s(�)) �QQ ' c�

�s(�)

�
�QQ : (100)

The scale dependence of the strong coupling in these equations is not essential in
one loop calculations; if higher loops are accounted for, the sum of all Feynman
integrals with the particular infrared cuto� � will automatically have suitable form
to give logs of the ratio of mc=� necessary to convert �s(mc) appearing in the
perturbative calculations, into �s(�) (more exactly, into the series in �s(�) entering
the renormalization group evolution eq.(100) ).

We can now use eq.(99) to correct the initial relation eq.(98) to account for
the proper � dependence of the perturbative term. The result is very simple: �2�
entering it must be merely understood as

�2� ! �2�(�) � �2
d�2�
d�2

' �2�(�)� c�
�s(�)

�
� �2 : (101)

The expression on the rhs is nothing but a linear (in �2) extrapolation of the matrix
element from the point � to � = 0. Formally, it is independent on �: the dependence
appears in terms proportional to �2

s. Therefore one can take any value of �QCD �
� �< mc. The modi�cation for the case of higher loop calculations is trivial: if the
perturbative corrections are calculated with an infrared cuto� at zero through order
n, the matrix elements of higher order operators must be extrapolated to � = 0
using the corresponding number of terms in the �s(�) expansion of the �-function
�(�s) determining the powerlike mixing of the operator:

�2� ! �2�(�)�
nX

k=1

�ks(�)
Z �2

0
d�2 ak(�

2=�2) (102)

if the perturbative expansion of the powerlike evolution equation for the operator
takes the form

��(�s(�)) =
1X
k=1

ak(�
2=�2)�ks (�) : (103)
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Note that the simple \renormalon" calculation corresponds only to the expansion of
the one loop expression for the running coupling �s(�) in terms of �s(�), therefore
it leads to

ak(�
2=�2) =

c�

�

 
b

2�
log

�

�

!k�1
:

The integrals of powers of logs in eq.(102) produce then factorials k! and this gen-
erates the 1=�2 renormalon that would lead to uncertainty � �2

QCD in high loops.
Generalization of the rule eq.(102) to the case of operators of a di�erent dimension
is straightforward.

The prescription eq.(102) is formally sensible at any �nite number of loops n;
in reality it is only reasonable for one or two loops, depending on the value of the
strong coupling �s(�): numerically the series start to blow up and would produce
large, though �nite values � �2

QCD for the extrapolated matrix elements at large
n di�ering dramatically from order to order. It does not happen at all if one does
not attempt to extrapolate to a low normalization point as it is assumed in the
original Wilson approach. In practical applications limited to lowest loop accuracy
it seems to be one of convenient technical ways to formulate the result. It appears
that routinely the operators relevant for the heavy quark expansions (including
such quantity as the heavy quark mass mQ, see e.g. [35]) are given just in this form.
Needless to say that then it must be speci�ed in each particular case to what order
in �s the concrete value is obtained { for otherwise the result loses any sense at the
level of nonperturbative e�ects. It is also clear that in extrapolating results to � = 0
one should consistently use the same order in perturbation theory for all quantities
involved.

Now let us turn from this rather general theoretical discussion to more practical
questions related to heavy 
avour decays. Up to now non-perturbative e�ects have
been discussed in detail through corrections of order 1=m3

Q. Some e�ects, like invari-
ant mass of the �nal hadronic state in the decays considered above, have corrections
starting at order 1=mQ and are expressed via the parameter �. As pointed out in
Ref. [25] and illustrated in the present paper, their e�ects are determined by Feyn-
man integrals which have a linear behavior in the infrared region; the corresponding
IR e�ects are not expressed in terms of matrix elements of any local operator.

The inclusive widths of heavy 
avour particles are obtained from an expansion
in local operators, and corrections start with terms scaling like 1=m2

Q. These are

described by two universal operators { chromomagnetic one �Q i
2
�GQ and the kinetic

energy operator, �Q (i ~D)2Q. The natural normalization scale for them is given by
� ' mQ, at least if one neglects the mass of the �nal state quark(s) 11. One cannot
however use directly this high normalization point because then the matrix elements
of high dimension operators will scale like mQ to the corresponding power due to
purely perturbative contributions, and instead of an expansion in 1=mQ one would

11It is important that for the hyper�ne splitting in heavy mesons which allows one to extract
experimentally the chromomagnetic matrix elements, the same normalization point emerges.
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obtain the suppression of the higher order terms only as some powers of �s(mQ).
To obtain the real power expansion one has to evolve these operators down to a
scale � which is to be much smaller than mQ but still much larger than �QCD. The
expansion one arrives at in this way runs, strictly speaking, in powers of �=mQ

The present state of the art in this kind of calculations is limited only to one loop
corrections to Wilson coe�cients which { apart from the chromomagnetic operator
that has a logarithmic renormalization { are calculated (or even typically borrowed
from the old QED calculations) without an infrared cuto�. The same refers to the
corrections to weak currents used in the present paper where the relevant ultraviolet
normalization point is given by mc. The analysis above suggests therefore that
the value of the kinetic energy term �2� is to be understood in the corresponding
expressions as a linear extrapolation to � = 0. This problem does not arise at all for
the chromomagnetic operator OG whose mixing with the leading one appears only in
the next order in 1=mQ due to the fact that it is not a spin singlet; its contribution
is absent in the perturbative integral and no double counting occurs for inclusive
widths. From practical viewpoint, because the value of �2� is basically unknown up
to now, it does not make a big di�erence at present to prefer this or an alternative
de�nition. Let us note in passing that it is quite probable that the QCD sum rule
estimates determine a similar quantity extrapolated (linearly) to � = 0 because no
explicit infrared cuto� in the integrals is introduced; though this question de�nitely
deserves a more careful analysis.

The issue of an accurate understanding of the de�nition of matrix elements of
operators becomes most important when one turns to the real practical bounds on
physical observables of the type discusses in this paper. For the extrapolation to
the zero renormalization point, for example, of the operator �Q~�2Q implies a sub-
traction of a positive quantity that, in principle, might have even changed the sign
of the matrix element. Even more essentially, in deriving our model-independent
lower bound on FB!D� we included into the �nal number the contribution of the
perturbative corrections part of which (obviously small though) is already contained
in the matrix element �2�. To state it di�erently, one may be concerned whether the
inequality eq.(85) survives the extrapolation of �2� to a low point as has been as-
sumed in our reasoning. We shall argue now that this e�ect is too small numerically
and cannot upset the bound we used.

To see it, let us consider the reasonably high normalization point � ' 1GeV. Us-
ing the explicit estimate of the renormalization point dependence of operator �Q~�2Q

in eq.(34) and assuming the one loop value �s(�) ' :36 one readily obtains that
the amount one may need to subtract from �2�(�) constitutes at most 0:15GeV2,
a value that does not exceed the theoretical uncertainties in the existing estimates
of �2�. Most probably this number overestimates the real contribution to be sub-
tracted, because approximate duality of the perturbative corrections is expected to
start earlier, and, on the other hand, the perturbative corrections are calculated nu-
merically using a smaller value of �s. The second e�ect, though formally of higher
order in �s, is too transparent physically to raise doubts that more realistic estimate
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corresponds to using �s(mc) rather than �s(1GeV) above.
At the same time, as emphasized in Sect. 3.2, if the normalization point is

introduced via the upper bound in the integral over the energy of the excited states,
the inequality �2� > �2G holds for any normalization point. In other words, this
regularization does not violate the positivity of the Pauli operator for the spinor
quark. Therefore, it is legitimate to take the normalization point as low as 1GeV.
In this case, obviously, one deals with �2G normalized at this low point as well, and it
is known that the perturbative evolution increases its value toward lower � ! In our
estimates we took �2G directly from the hyper�ne splitting of B and B�, therefore
that value corresponded to � ' 4:5GeV. Apparently its hybrid log enhancement
would safely make up for the relatively insigni�cant subtraction of the \perturbative"
contribution to �2�. Based on these arguments we have stated in the previous paper
[38] that the inequality

�2� > �2G

that holds in beauty mesons must survive renormalization e�ects, in spite of recent
claims [42] that it cannot hold true.

It is instructive to trace how this inequality works at di�erent scales �. Most
trivially it is ful�lled when � is taken parametrically large. Then �2� contains large
positive perturbative piece of the order of �s

�
�2 that grows faster than any possible

change in �2G having no additive renormalization, even if the hybrid anomalous
dimension of the latter were negative.

A more interesting consideration emerges when one wants to push � toward lower
values. Using the naive one loop expression for the evolution of �2G corresponding to
the hybrid anomalos dimension 
G = 3 one would obtain an arbitrary large value for
�2� which, of course has little sense. The answer to this apparent paradox is rather
obvious, especially if one looks at the hypothetic zero recoil excitation curve (for
the external current �c
ib ) similar to the one depicted in Fig. 4. The exact evolution
of the di�erence �2� � �2G, according to the sum rule eq.(83), is given by the decay
probability occurring at energy � = �; obviously the latter in no way is given at low
� by the simple perturbative formulae using the strong coupling �s with the Landau
pole, and rather stays �nite at any �. In other words, the exact evolution of �2G is
to be smooth even when one approaches the strong coupling regime, and no formal
contradiction emerges.

It is worth emphasizing here that, of course, the exact form of the �-function for
all operators has no de�nite sense at high orders depending on the used renormal-
ization scheme, therefore in general speculations about the evolution in the strong
coupling regime are not very meaningful. However, �xing a particular schememakes
it well de�ned theoretically, and choosing a physical de�nition of the cuto� like the
one adopted in the present paper allows one to conclude that the corresponding
`exact' evolution must be non-singular.
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5 Conclusions

In the present paper we have addressed weak transitions between heavy quarks
from the \inclusive" side most suitable theoretically for applying the technique of
the Wilson OPE. This analysis represents the natural extension of consideration
outlined in Ref. [14] concerning the heavy quark distribution function relevant for
the decays in the limit of small velocity for the �nal state hadron system. It has been
demonstrated that a few sum rules discussed so far in the literature are in fact some
dispersion relations for the moments of a single distribution function, considered
in di�erent orders in 1=mQ and in di�erent kinematics. We have shown how the
expansions of HQET can consistently be obtained from QCD using this strategy,
and in this way illustrated that such natural assumptions as \global duality", that
usually are attributed only to the inclusive width calculations, are in fact necessary
ingredients in any consistent model-independent treatment and, in particular, are
implicitly used in HQET as well.

The analysis of the sum rules proved to be very instructive in elucidating the
important fact that has been usually neglected in HQET { the necessity of introduc-
ing an explicit infrared normalization point � ensuring true separation of low and
high momentum physics, which cannot be set to zero. The consistent application
of this approach leads to the fact that all nonperturbative parameters, including �,
cannot be sensibly de�ned as universal constants, but rather depend explicitly on
the normalization point. This has been previously mentioned in our paper [14] and
discussed in detail in Refs. [25, 26]. Here we gave a physical illustration of how it
works analyzing possible constructive phenomenological de�nitions of corresponding
quantities in the presence of radiative corrections. In this way we supplemented the
previous calculations by estimates of the dependence of the kinetic energy operator
�Q~�2Q on the renormalization point.

The fact that such \purely nonperturbative" objects like the pole mass of the
heavy quark, �, \purely non-pertubative" distribution function of heavy quarks
routinely used in HQET are incompatible with the consistent OPE-based approach
and are ill-de�ned theoretically calls for the clari�cation of how the known results
on non-perturbative corrections in HQET must be interpreted. This does not mean
of course that the concrete calculations that have been done so far are irrelevant,
and we formulated the way in which they are to be understood for a few typical
examples.

As a practical application of our sum rules we have derived a model independent
lower bound on the deviation of the exclusive axial form factor FB!D� of the B !
D� + l � decay at zero recoil { a process that for a long time has been believed to
give the best theoretical accuracy to determine jVcbj, and estimated a reasonable
`central' value, FB!D�(~q = 0) ' 0:9 . The deviation appears to be essentially larger
than the estimates that had been obtained before from model calculations based on
standard HQET, and apparently better agree with quite general expectations about
the size of corrections to the Heavy Quark symmetry for charmed particles. On
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the other hand, the theoretical clari�cation of the notion of the heavy quark mass
made in recent papers [25, 26] suggests that the most accurate theoretically way to
determine the CKM matrix elements for heavy quark decays is using the inclusive

semileptonic widths. These results have been reported in Ref. [38].
It is worth clarifying in this respect that in our estimates of the exclusive form

factors of the b ! c transitions we consistently took into account terms through
order 1=m2

Q and discarded e�ects that scale like 1=m3
Q. The parameter 1=mc is

actually not very small and even the second order corrections are as large as 10%
here; therefore one can expect sizeable relative corrections for real form factors due
to higher order terms. In particular, this applies to the model-independent upper
bound for FB!D�. Our result is strict in the sense that it holds for corrections
through terms of order 1=m2

Q that have been addressed in the literature so far.
One of the sum rules at zero recoil enabled us to rederive a model independent

lower bound on the value of the kinetic energy operator in B mesons,

�2� =
1

2MB

hBj�b~�2 bjBi �>
3

4

�
M2

B �MB�

�

in a way that clearly showed its physical relevance even in real QCD, and not only in
the approximate framework of quantummechanical consideration, as it is sometimes
stated. Moreover, we believe that using the corresponding sum rule eq.(83) (or
similar ones mentioned in Sect. 3.3) that expresses the di�erence �2� � �2G as a
dispersion integral over the excited states can provide one with the most promising
theoretical method to calculate, by means of QCD sum rules, this matrix element,
which is very important for heavy 
avor physics.

ACKNOWLEDGEMENTS: N.U. gratefully acknowledges interesting dis-
cussions with M.Voloshin about charm and beauty quark masses and the creative
atmosphere and hospitality at Theoretical Physics Institute of University of Min-
nesota, as well as the exchange of ideas related to the subject of this paper with
V.Braun. He also thanks T.Mannel, A.Falk and M.Savage for the discussion of stan-
dard HQET calculations. This work was supported in part by the National Science
Foundation under the grant number PHY 92-13313 and by DOE under the grant
number DOE-AC02-83ER40105.

42



Figure Captions

Fig. 1. The tree graph for the transition operator.

Fig. 2. A qualitative picture of the spectrum d�=dE� in the HQ ! �Xq with
O(v2) terms included. The monochromatic line of the quark transition Q ! �q

(the dashed line at E = E0) is dual to the physical line corresponding to the elastic
decay HQ ! Hq� at E = E

phys
0 plus a shoulder due to the transitions to the excited

states HQ ! �H�
q . The height of the shoulder is � v2. Hard gluons are neglected.

Fig. 3. The diagram responsible for the one-gluon correction in the energy
distribution

d�(Q! �q + gluon)

dE�

:

Fig. 4. A sketch of the energy spectrum d�=dE� with O(�s) radiative tail
included.

Fig. 5. The cuts of hi(q0) in the complex q0 plane. Each of the three points,
q0 ' MB +MD, q0 = MB �MD and q0 ' �(3MB +MD), marks the beginning of
two cuts. Only a part of one cut at 0 < q0 < MB �MD is relevant to the decay
process under consideration.
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