92 research outputs found

    A facility for investigation of multiple hadrons at cosmic-ray energies

    Get PDF
    An experimental arrangement for studying multiple hadrons produced in high-energy hadron-nucleus interactions is under construction at the university of Turku. The method of investigation is based on the detection of hadrons arriving simultaneously at sea level over an area of a few square meters. The apparatus consists of a hadron spectrometer with position-sensitive detectors in connection with a small air shower array. The position resolution using streamer tube detectors will be about 10 mm. Energy spectra of hadrons or groups of simultaneous hadrons produced at primary energies below 10 to the 16th power eV can be measured in the energy range 1 to 2000 GeV

    Spectral analysis of the Forbush decrease of 13 July 1982

    Get PDF
    The maximum entropy method has been applied in the spectral analysis of high-energy cosmic-ray intensity during the large Forbush event of July 13, 1982. An oscillation with period of about 2 hours and amplitude of 1 to 3% was found to be present during the decrease phase. This oscillation can be related to a similar periodicity in the magnetospheric field. However, the variation was not observed at all neutron monitor stations. In the beginning of the recovery phase, the intensity oscillated with a period of about 10 hours and amplitude of 3%

    Investigation of cosmic rays in very short time scales

    Get PDF
    A fast databuffer system, where cosmic ray events in the Turku hadron spectrometer, including particle arrival times are recorded with time resolution of 100 ns was constructed. The databuffer can be read continuously by a microprocessor, which preanalyzes the data and transfers it to the main computer. The time span, that can be analyzed in every detail, is a few seconds. The high time resolution enables a study of time correlated groups of high energy particles. In addition the operational characteristics of the spectrometer can be monitored in detail

    Observations of cosmic-ray modulations in the fall, 1984

    Get PDF
    Modulation of cosmic-ray energy spectrum was studied by using the Turku double neutron monitor. The multiplicity region of detected neutrons produced by cosmic ray hadrons in the monitor was divided into seven categories corresponding to mean energies 0.1, 0.3, 1.0, 3.2, 8.6, 21, and 94 GeV of hadrons at sea level. Based on 24-hour frequencies, a statistical analysis showed that modulation of the intensity in all categories occurred during several periods in the fall 1984. The magnitude of the variation was a few per cent

    Local C-Reactive Protein Expression in Obliterative Lesions and the Bronchial Wall in Posttransplant Obliterative Bronchiolitis

    Get PDF
    The local immunoreactivity of C-reactive protein (CRP) was studied in a heterotopic porcine model of posttranplant obliterative bronchiolitis (OB). Bronchial allografts and control autografts were examined serially 2–28 days after subcutaneous transplantation. The autografts stayed patent. In the allografts, proliferation of inflammatory cells (P < .0001) and fibroblasts (P = .02) resulted in occlusion of the bronchial lumens (P < .01). Influx of CD4+ (P < .001) and CD8+ (P < .0001) cells demonstrated allograft immune response. CRP positivity simultaneously increased in the bronchial walls (P < .01), in macrophages, myofibroblasts, and endothelial cells. Local CRP was predictive of features characteristic of OB (R = 0.456–0.879, P < .05−P < .0001). Early obliterative lesions also showed CRP positivity, but not mature, collagen-rich obliterative plugs (P < .05). During OB development, CRP is localized in inflammatory cells, myofibroblasts and endothelial cells probably as a part of the local inflammatory response

    Martini 3 Coarse-Grained Force Field for Carbohydrates

    Get PDF
    The Martini 3 force field is a full re-parametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance it allows for more accurate description of condensed phase systems. In the present work we develop a consistent strategy to parametrize carbohydrate molecules accurately within the framework of Martini 3. In particular, we develop a canonical mapping scheme that decomposes arbitrarily large carbohydrates into a limited number of fragments. Bead types for these fragments have been assigned by matching physicochemical properties of mono- and disaccharides. In addition, guidelines for assigning bonds, angles, and dihedrals are developed. These guidelines enable a more accurate description of carbohydrate conformations than in the Martini 2 force field. We show that models obtained with this approach are able to accurately reproduce osmotic pressures of carbohydrate water solutions. Furthermore, we provide evidence that the model differentiates correctly the solubility of the poly-glucoses dextran (water soluble) and cellulose (water insoluble, but soluble in ionic-liquids). Finally, we demonstrate that the new building blocks can be applied to glycolipids, being able to reproduce membrane properties and to induce binding of peripheral membrane proteins. These test cases demonstrate the validity and transferability of our approach

    Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management

    Get PDF
    Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). while the number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently in fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behavior, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause fisheries-induced evolution with effects accumulating over time. Consequently, FIE may alter then utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons, An important reason this is not happening is the lack of an appropriate assessment framework. We therefor describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary outcomes of alternative management options. EvoIA can contribute to the ecosystem approach to fisheries management by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries

    Medico-legal autopsy in postoperative hemodynamic collapse following coronary artery bypass surgery

    Get PDF
    Sudden unexpected postoperative hemodynamic collapse with a high mortality develops in 1–3% of patients undergoing coronary artery bypass surgery (CABG). The contribution of surgical graft complications to this serious condition is poorly known and their demonstration at autopsy is a challenging task. Isolated CABG was performed in 8,807 patients during 1988–1999. Of the patients, 76 (0.9%) developed sudden postoperative hemodynamic collapse resulting in subsequent emergency reopening of the median sternotomy and open cardiac massage. Further emergency reoperation could be performed in 62 (82%) whereas 14 patients died prior to reoperation and a further 21 did not survive the reoperation or died a few days later. All 35 (46%) patients who did not survive were subjected to medico-legal autopsy combined with postmortem cast angiography. By combining clinical data with autopsy and angiography data, various types of graft complications were observed in 27 (36%, 1.3 per patient) of the 76 patients with hemodynamic collapse. There were no significant differences in the frequency (33 vs. 40%) or number of complicated grafts per patient (1.2 vs. 1.4) between those who survived reoperation and who did not. Autopsy detected 25 major and minor findings not diagnosed clinically. Postmortem cast angiography visualized 2 graft twists not possible to detect by autopsy dissection only. Surgical graft complications were the most frequent single cause for sudden postoperative hemodynamic collapse in CABG patients leading to a fatal outcome in almost half of the cases. Postmortem angiography improved the accuracy of autopsy diagnostics of graft complications
    corecore