930 research outputs found
Human-Machine Interface for Tele-Robotic Operation: Mapping of Tongue Movements Based on Aural Flow Monitoring
2004 IEEE International Conference on Intelligent Robots and Systems (IROS), October, 2004 (Awarded “Best Paper in Conference”
Adaptive synthesis of a wavelet transform using fast neural network
This paper introduces a new method for an adaptive synthesis of a wavelet transform using a fast neural network with a topology based on the lattice structure. The lattice structure and the orthogonal lattice structure are presented and their properties are discussed. A novel method for unsupervised training of the neural network is introduced. The proposed approach is tested by synthesizing new wavelets with an expected energy distribution between low- and high-pass filters. Energy compaction of the proposed method and Daubechies wavelets is compared. Tests are performed using sound and image signals
Anisotropic Vacuum Induced Interference in Decay Channels
We demonstrate how the anisotropy of the vacuum of the electromagnetic field
can lead to quantum interferences among the decay channels of close lying
states. Our key result is that interferences are given by the {\em scalar}
formed from the antinormally ordered electric field correlation tensor for the
anisotropic vacuum and the dipole matirx elements for the two transitions. We
present results for emission between two conducting plates as well as for a two
photon process involving fluorescence produced under coherent cw excitationComment: 6 pages with 2 figures, to appear in Phys. Rev. Lett. (tentative june
2000
Hidden attractors in fundamental problems and engineering models
Recently a concept of self-excited and hidden attractors was suggested: an
attractor is called a self-excited attractor if its basin of attraction
overlaps with neighborhood of an equilibrium, otherwise it is called a hidden
attractor. For example, hidden attractors are attractors in systems with no
equilibria or with only one stable equilibrium (a special case of
multistability and coexistence of attractors). While coexisting self-excited
attractors can be found using the standard computational procedure, there is no
standard way of predicting the existence or coexistence of hidden attractors in
a system. In this plenary survey lecture the concept of self-excited and hidden
attractors is discussed, and various corresponding examples of self-excited and
hidden attractors are considered
Microleakage and Resin-to-Dentin Interface Morphology of Pre-Etching versus Self-Etching Adhesive Systems
The purpose of this study was to compare the microleakage and tissue-adhesive interface morphology from Class V restorations using different systems of dentin adhesives. Class V cavities were prepared on buccal surfaces of 27 extracted caries-free molars and premolars. Teeth were randomly assigned to one of three groups: (1) Prime & Bond NT, a 5th generation system using an initial step of total etch followed by a second step of application of a self bonding primer (2) Clearfil SE Bond, a 5th generation adhesive system employing two separate steps of self-etch priming and subsequent bonding (3) One-up Bond F, a 6th generation one step self-etching, self-priming and self-bonding adhesive. Microleakage and interface morphology of teeth restored with these adhesives and a composite resin were evaluated. Kruskal-Wallis Test (p = 0.05) was used to analyze the results. SEM analysis was used to relate interface morphology to microleakage. The mean and (SD) values of microleakage were: Prime and Bond NT: 0.15 (0.33), Clearfil SE Bond: 0.06 (0.17) and One-up Bond F: 2.96 (0.63). The mean microleakage for One-up Bond was significantly higher than for the other groups (p<0.05). Protruding tags in dentin channels were observed in Prime and Bond and Clearfil systems, but not in One-up Bond. The single step adhesive system, although more convenient for the clinician, uses a low viscosity formulation difficult to keep in place on cavity walls. It also tends to be too aggressive and hydrophilic to create an impermeable hybridized tissue-adhesive interfacial layer resistant to microleakage. Two-step adhesive systems, on the other hand, were retained on all segments of the cavosurface during application, and formed a hybridized interfacial layer resistant to microleakage
Frame Theory for Signal Processing in Psychoacoustics
This review chapter aims to strengthen the link between frame theory and
signal processing tasks in psychoacoustics. On the one side, the basic concepts
of frame theory are presented and some proofs are provided to explain those
concepts in some detail. The goal is to reveal to hearing scientists how this
mathematical theory could be relevant for their research. In particular, we
focus on frame theory in a filter bank approach, which is probably the most
relevant view-point for audio signal processing. On the other side, basic
psychoacoustic concepts are presented to stimulate mathematicians to apply
their knowledge in this field
Customisation of the Exome Data Analysis Pipeline Using a Combinatorial Approach
The advent of next generation sequencing (NGS) technologies have revolutionised the way biologists produce, analyse and interpret data. Although NGS platforms provide a cost-effective way to discover genome-wide variants from a single experiment, variants discovered by NGS need follow up validation due to the high error rates associated with various sequencing chemistries. Recently, whole exome sequencing has been proposed as an affordable option compared to whole genome runs but it still requires follow up validation of all the novel exomic variants. Customarily, a consensus approach is used to overcome the systematic errors inherent to the sequencing technology, alignment and post alignment variant detection algorithms. However, the aforementioned approach warrants the use of multiple sequencing chemistry, multiple alignment tools, multiple variant callers which may not be viable in terms of time and money for individual investigators with limited informatics know-how. Biologists often lack the requisite training to deal with the huge amount of data produced by NGS runs and face difficulty in choosing from the list of freely available analytical tools for NGS data analysis. Hence, there is a need to customise the NGS data analysis pipeline to preferentially retain true variants by minimising the incidence of false positives and make the choice of right analytical tools easier. To this end, we have sampled different freely available tools used at the alignment and post alignment stage suggesting the use of the most suitable combination determined by a simple framework of pre-existing metrics to create significant datasets
Bioinformatics in crosslinking chemistry of collagen with selective cross linkers
<p>Abstract</p> <p>Background</p> <p>Identifying the molecular interactions using bioinformatics tools before venturing into wet lab studies saves the energy and time considerably. The present study summarizes, molecular interactions and binding energy calculations made for major structural protein, collagen of Type I and Type III with the chosen cross-linkers, namely, coenzyme Q<sub>10</sub>, dopaquinone, embelin, embelin complex-1 & 2, idebenone, 5-O-methyl embelin, potassium embelate and vilangin.</p> <p>Results</p> <p>Molecular descriptive analyses suggest, dopaquinone, embelin, idebenone, 5-O-methyl embelin, and potassium embelate display nil violations. And results of docking analyses revealed, best affinity for Type I (- 4.74 kcal/mol) and type III (-4.94 kcal/mol) collagen was with dopaquinone.</p> <p>Conclusions</p> <p>Among the selected cross-linkers, dopaquinone, embelin, potassium embelate and 5-O-methyl embelin were the suitable cross-linkers for both Type I and Type III collagen and stabilizes the collagen at the expected level.</p
- …