5 research outputs found

    High antiplasmodial activity of novel plasmepsins I and II inhibitors

    Get PDF
    The aim of this study was to develop new antiplasmodial compounds acting through distinct mechanisms during both the liver and the blood stages of the parasite life cycle. Compounds were designed on the basis of the "double-drug" approach: primaquine, which has been linked to statine-based inhibitors of plasmepsins (PLMs), the plasmodial aspartic proteases involved in degradation of hemeoglobin. The compounds were tested in vitro for anti-PLM I/PLM II activities and against chloroquine-sensitive (D10) and chloroquine-resistant (W2) strains of P. falciparum. An antiplasmodial activity (IC50) as low as 0.1 M was obtained, an excellent improvement in comparison with inhibitors previously reported (IC50 = 2-20 M). The killing activity was equally directed against both P. falciparum strains and was correlated to lipophilicity (calculated as ALogP), for all compounds but one (9). All compounds inhibited PLM I and PLM II in the nanomolar range (Ki = 1-700 nM). The most promising compounds (2, 6, 10) were not cytotoxic against human fibroblasts at 100 M and were highly selective for PLMs vs human cathepsin

    Structural Basis for Polyproline-Mediated Ribosome Stalling and Rescue by the Translation Elongation Factor EF-P

    Get PDF
    Ribosomes synthesizing proteins containing consecutive proline residues become stalled and require rescue via the action of uniquely modified translation elongation factors, EF-P in bacteria, or archaeal/eukaryotic a/eIF5A. To date, no structures exist of EF-P or eIF5A in complex with translating ribosomes stalled at polyproline stretches, and thus structural insight into how EF-P/eIF5A rescue these arrested ribosomes has been lacking. Here we present cryo-EM structures of ribosomes stalled on proline stretches, without and with modified EF-P. The structures suggest that the favored conformation of the polyproline-containing nascent chain is incompatible with the peptide exit tunnel of the ribosome and leads to destabilization of the peptidyltRNA. Binding of EF-P stabilizes the P-site tRNA, particularly via interactions between its modification and the CCA end, thereby enforcing an alternative conformation of the polyproline-containing nascent chain, which allows a favorable substrate geometry for peptide bond formation

    Atovaquone-statine "Double-Drugs" with high antiplasmodial activity

    No full text
    Combining chemicals. Malaria is one of the most widespread parasitic infections in the world, however, the unavailability of a vaccine and the spread and intensification of drug resistance over the past 15-20 years have led to a dramatic decline in the efficacy of the most affordable antimalarial drugs. Herein, the development of "double-drugs" to tackle inhibition of P. falciparum growth is discussed. (Chemical Equation Presented)
    corecore