669 research outputs found
Morphological and functional modifications during the process of ageing : characteristics and benefits of physical activity
Ageing is a slow but dynamic process, which involves many internal and external influences. It is a complex multifactorial phenomenon characterized by progressive physiological, genetic, endocrinological and molecular changes, responsible for the increased risk of morbidity and death.
Because of an increase in life expectancy, the incidence of degenerative diseases, such as muscular and skeletal diseases will also increase.
The age-associated loss of skeletal muscle mass and strength (i.e. sarcopenia) seems to be an unavoidable part of the physical human decline. In fact, the relationship of ageing with impaired physical performance, frailty, loss of functional independence and increased risks of falls are well established in the literature. In addition, decreased muscle strength is also highly predictive of incident disability in the elderly. In particu- lar, weakness and functional deficit have been considered hallmark predictors of age related morbidity and decreased autonomy. Research on ageing has traditionally been concerned with health, but recently the concept of functional capacity has also been at- tracting growing attention. Regular physical activity, including, muscle-strengthening activity such as resistance exercises, balance and flexibility exercises, aerobic activity, is essential to develop a strategy to delay ageing
Exploiting the pro-resolving actions of glucocorticoid-induced proteins Annexin A1 and GILZ in infectious diseases.
For decades, glucocorticoids (GC) have been used to treat several inflammatory conditions, including chronic and autoimmune diseases, due to their potent anti-inflammatory properties. In the context of infectious diseases, the use of GCs may be effective as adjuvant to antibiotic therapy by controlling excessive inflammatory responses resulting in better outcome in some cases. However, the use of GCs has been associated with a vast number of side effects, including increased probability of immunosuppression and consequent risk of opportunistic infection. Glucocorticoid-induced leucine zipper (GILZ) and Annexin A1 (AnxA1) are GC-induced proteins intrinsically involved with the anti-inflammatory functions of GCs without the associated adverse metabolic effects. Recent studies have shown that these GC-proteins exhibit pro-resolving effects. An essential characteristic of pro-resolving molecules is their ability to coordinate the resolution of inflammation and promote host defense in most experimental models of infection. Although the role of GILZ and AnxA1 in the context of infectious diseases remain to be better explored, herein we provide an overview of the emerging functions of these GC-proteins obtained from pre-clinical models of infectious diseases
Prenatal BoBsTM in the cytogenetic analysis of products of spontaneous miscarriage
Background. Fifty percent of spontaneous miscarriages (SMs) are attributed to chromosomal abnormalities. Cytogenetic analysis is an important tool for patient counselling and assessment of the risk of recurrence in future pregnancies. Conventional karyotyping has been the gold standard for chromosomal investigation of products of conception (POC), but it has limitations due to sample maceration, culture failure and maternal cell contamination. Molecular cytogenetic approaches have therefore been developed and found valuable in the cytogenetic investigation of these samples. The Prenatal BoBsTM and KaryoLite BoBsTM, based on the newly developed BACs-on-BeadsTM technology, have been described as reliable tests for rapid detection of aneuploidies in prenatal and POC samples, respectively.Objective. To describe our clinical experience of routine screening of POC samples with Prenatal BoBsTM, the test used by our laboratory in France.Methods. Seventeen samples collected at the University Hospital of Sidi Bel Abbès (Western Algeria) and a further 60 from the University Hospital of Clermont-Ferrand (France) were analysed (19 chorionic villi from products of curettage, 12 placentas, 9 amniotic cells and 37 biopsy specimens). All were screened for the frequent aneuploidies (chromosomes 13, 18, 21, X and Y) in addition to nine microdeletion/ microduplication syndrome regions by Prenatal BoBsTM. Standard karyotyping was performed on 51 samples, but failed in 38 cases.Results. Prenatal BoBsTM identified one trisomy 21 and one deletion of 17p13.3. Furthermore, it provided a conclusive result in cases of culture failure (n=38) and in samples with macerated tissue (n=19). The overall failure rate was 11.4%.Conclusions. Prenatal BoBsTM is a promising technology that represents a fast, sensitive and robust alternative to routine screening for chromosomal abnormality in products of SM. Furthermore, it overcomes the limitations of conventional karyotyping and current molecular cytogenetic techniques
Anomaly detection in quasi-periodic energy consumption data series: a comparison of algorithms
The diffusion of domotics solutions and of smart appliances and meters enables the monitoring of energy consumption at a very fine level and the development of forecasting and diagnostic applications. Anomaly detection (AD) in energy consumption data streams helps identify data points or intervals in which the behavior of an appliance deviates from normality and may prevent energy losses and break downs. Many statistical and learning approaches have been applied to the task, but the need remains of comparing their performances with data sets of different characteristics. This paper focuses on anomaly detection on quasi-periodic energy consumption data series and contrasts 12 statistical and machine learning algorithms tested in 144 different configurations on 3 data sets containing the power consumption signals of fridges. The assessment also evaluates the impact of the length of the series used for training and of the size of the sliding window employed to detect the anomalies. The generalization ability of the top five methods is also evaluated by applying them to an appliance different from that used for training. The results show that classical machine learning methods (Isolation Forest, One-Class SVM and Local Outlier Factor) outperform the best neural methods (GRU/LSTM autoencoder and multistep methods) and generalize better when applied to detect the anomalies of an appliance different from the one used for training
Production of the soluble pattern recognition receptor PTX3 by myeloid, but not plasmacytoid, dendritic cells
PTX3 is a prototypic of long pentraxin consisting of an N-terminal portion coupled to a C-terminal pentraxin domain, the latter related to short pentraxins (C-reactive protein and serum amyloid P component). PTX3 is a soluble pattern recognition receptor, which plays a non-redundant role in resistance against selected pathogens and in female fertility. The present study was designed to analyze the production of PTX3 by human dendritic cells (DC) and to define the role of different innate immunity receptors in its induction. Human monocyte-derived DC produced copious amounts of PTX3 in response to microbial ligands engaging different members of the Toll-like receptor (TLR) family (TLR1 through TLR6), whereas engagement of the mannose receptor had no substantial effect. DC were better producers of PTX3 than monocytes and macrophages. Freshly isolated peripheral blood myeloid DC produced PTX3 in response to diverse microbial stimuli. In contrast, plasmacytoid DC exposed to influenza virus or to CpG oligodeoxynucleotides engaging TLR9, did not produce PTX3. PTX3-expressing DC were present in inflammatory lymph nodes from HIV-infected patients. These results suggest that DC of myelomonocytic origin are a major source of PTX3, a molecule which facilitates pathogen recognition and subsequent activation of innate and adaptive immunity
Recommended from our members
Characterizing Rock Abundance At ExoMars Landing Site Candidates
We present preliminary work to characterize surface rock abundance at ExoMars Rover landing site candidates. A challenge in quantifying the
abundance of surface rocks is using the population of large (âł1 m) rocks that are resolved in orbital images to infer the size of the smaller, unresolved rock population. This is particularly relevant for the ExoMars Rover mission, where the Landing Moduleâs clearance of 35 cm makes it necessary to know the probability of encountering rocks where 0.35 < D < 1 m.
âFloat rocksâ are individual fragments of rock not associated with a continuous outcrop or body of rock âe.g. transported rocks or impact debris. These can be identified in Mars Reconnaissence Orbiter HiRISE
images, where the mid-afternoon local solar time, dictated by MROsâ orbit, causes float rocks to appear as bright sunlit features adjacent to strong shadows. However, the smallest features resolvable in HiRISE images occupy around 3-4 pixels, corresponding to ~1-m sized rocks. This inherently limits the ability to directly identify from orbit the small, but potentially hazardous rock population. âOutcropâ is defined as continuous expanses of bedrock or surficial deposits exposed at the surface. Both float rocks and outcrop can contribute to slopes that may constitute a hazard for landed missions.
We present rock counts at ExoMars Rover landing site candidates and assess approaches to constrain the morphological characteristics of Marsâ surface that are relevant to rover and lander safety
- âŚ