2 research outputs found

    Characteristics and transformation of Pacific winter water on the Chukchi Sea shelf in late spring

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124 (2019): 7153– 7177, doi: 10.1029/2019JC015261.Data from a late spring survey of the northeast Chukchi Sea are used to investigate various aspects of newly ventilated winter water (NVWW). More than 96% of the water sampled on the shelf was NVWW, the saltiest (densest) of which tended to be in the main flow pathways on the shelf. Nearly all of the hydrographic profiles on the shelf displayed a two‐layer structure, with a surface mixed layer and bottom boundary layer separated by a weak density interface (on the order of 0.02 kg/m3). Using a polynya model to drive a one‐dimensional mixing model, it was demonstrated that, on average, the profiles would become completely homogenized within 14–25 hr when subjected to the March and April heat fluxes. A subset of the profiles would become homogenized when subjected to the May heat fluxes. Since the study domain contained numerous leads within the pack ice—many of them refreezing—and since some of the measured profiles were vertically uniform in density, this suggests that NVWW is formed throughout the Chukchi shelf via convection within small openings in the ice. This is consistent with the result that the salinity signals of the NVWW along the central shelf pathway cannot be explained solely by advection from Bering Strait or via modification within large polynyas. The local convection would be expected to stir nutrients into the water column from the sediments, which explains the high nitrate concentrations observed throughout the shelf. This provides a favorable initial condition for phytoplankton growth on the Chukchi shelf.The authors are indebted to Commanding Officer John Reeves, Executive Officer Gregory Stanclik, Operations Officer Jacob Cass, and the entire crew of the USCGC Healy for their hard work and dedication in making the SUBICE cruise a success. We also acknowledge Scott Hiller for his assistance with Healy's meteorological data. We thank an anonymous reviewer for helpful input that improved the paper. Funding for A. P., R. P., C. N., and F. B. was provided by the National Science Foundation (NSF) under grant PLR‐1303617. K. M. was funded by the Natural Sciences and Engineering Research Council of Canada. K. V. acknowledges the Bergen Research Foundation under Grant BFS2016REK01. K. A. was supported by the NSF grant PLR‐1304563. The CTD and shipboard ADCP data are available from https://www.rvdata.us/search/cruise/HLY1401, and the nutrient data can be accessed from https://arcticdata.io/catalog/view/doi:10.18739/A2RG3Z and http://ocean.stanford.edu/subice/. The shipboard meteorological data reside at http://ocean.stanford.edu/subice/.2020-04-1

    Water mass transformation in the Iceland Sea : Contrasting two winters separated by four decades

    Get PDF
    Dense water masses formed in the Nordic Seas flow across the Greenland–Scotland Ridge and contribute substantially to the lower limb of the Atlantic Meridional Overturning Circulation. Originally considered an important source of dense water, the Iceland Sea gained renewed interest when the North Icelandic Jet — a current transporting dense water from the Iceland Sea into Denmark Strait — was discovered in the early 2000s. Here we use recent hydrographic data to quantify water mass transformation in the Iceland Sea and contrast the present conditions with measurements from hydrographic surveys conducted four decades earlier. We demonstrate that the large-scale hydrographic structure of the central Iceland Sea has changed significantly over this period and that the locally transformed water has become less dense, in concert with a retreating sea-ice edge and diminished ocean-to-atmosphere heat fluxes. This has reduced the available supply of dense water to the North Icelandic Jet, but also permitted densification of the East Greenland Current during its transit through the presently ice-free western Iceland Sea in winter. Together, these changes have significantly altered the contribution from the Iceland Sea to the overturning in the Nordic Seas over the four decade period.Peer reviewe
    corecore