127 research outputs found

    New Identity of the Kimberlite Melt: Constraints from Unaltered Diamondiferous Udachnaya –East Pipe Kimberlite, Russia

    Get PDF
    Kimberlite magmas are in many aspects unusual compared to other terrestrial magmatic liquids. They are very rare and occur in small volumes, but their intimate relationships with diamonds make them invaluable to the scientific and exploration communities. The association of kimberlite rocks with diamonds and deep-seated mantle xenoliths links the origin of parental kimberlite magmas to the highest known depths (> 150 km) of magma derivation (e.g. Dawson, 1980; Eggler, 1989; Girnis & Ryabchikov, 2005; Mitchell, 1986; Mitchell, 1995; Pasteris, 1984). Kimberlite magmas would have one of the lowest viscosities and highest buoyancies that enable exceptionally rapid transport from the source region (Canil & Fedortchouk, 1999; Eggler, 1989; Haggerty, 1999; Kelley & Wartho, 2000; Sparks et al., 2006) and preservation of diamonds. Despite significant research efforts, there is still uncertainty about the true chemical identity of kimberlite parental melts and their derivates. Kimberlite magmas are always contaminated by large quantities of lithic fragments and crystals, unrelated to the evolution of the parental melt. In most cases kimberlites are severely modified by syn- and post-magmatic changes that have altered the original alkali and volatile element abundances. These problems are reflected in the definition of the kimberlite rock as “both a contaminated and altered sample of its parent melt” (Pasteris, 1984). Numerous other definitions of the kimberlite commonly reflect on ultramafic compositions and enrichment in volatiles (CO2 and H2O; Clement et al., 1984; Kjarsgaard et al., 2009; Kopylova et al., 2007; Mitchell, 1986; Mitchell, 2008; Patterson et al., 2009; Skinner & Clement, 1979) which are supposedly inherited from parental magmas. The physical properties of a kimberlite magma directly, and occurrence of diamonds indirectly, relate to the enrichment in carbonate components which are represented in common kimberlites by calcite and dolomite. The abundant carbonate component in kimberlite rocks is counter-balanced by a more abundant olivine (ultramafic) component, represented by olivine fragments and crystals that are commonly affected by serpentinisation. The ultramafic silicate compositions of kimberlites are ascribed to abundant olivine macrocrysts and phenocrysts, whereas significant CO2 and H2O contents are attributed respectively to carbonate minerals (calcite and dolomite) and serpentine (+ other H2O-bearing magnesian silicates). Unfortunately, the masking effects of deuteric and post-magmatic alteration do not permit routine recognition of olivine generations, and so the olivine component originally dissolved in the kimberlite parental melt remains controversial (Brett et al., 2009; Francis & Patterson, 2009; Mitchell & Tappe, 2010; Patterson et al., 2009). Similarly, the original magmatic abundances of volatile and fluid-mobile alkali elements are disturbed by syn- and post-emplacement modifications, thus complicating complicating quantification of the parental melt composition if inferred from bulk kimberlite analyses. The existing dogma about correspondence between compositions of whole rock kimberlites and their parental melt has been recently challenged by the newcomers to the kimberlite scientific community (e.g., Kamenetsky et al., 2004; Kamenetsky et al., 2007a; Kamenetsky et al., 2007b; Kamenetsky et al., 2008; Kamenetsky et al., 2009a; Kamenetsky et al., 2009b; Kamenetsky et al., 2009c; Maas et al., 2005). A breakthrough into understanding of the kimberlite magma chemical and physical characteristics was made possible by detailed studies of the diamondiferous Udachnaya-East kimberlite pipe in Siberia. Unlike other kimberlites worldwide, severely modified by syn- and post-magmatic changes, the Udachnaya-East kimberlite is the only known fresh rock of this type, and thus it is invaluable source of information on the composition and temperature of primary melt, its mantle source, rheological properties of ascending kimberlite magma. This kimberlite preserved unequivocal evidence for olivine populations, olivine paragenetic assemblages and olivine-hosted melt inclusions, and the role of mantle-derived alkali carbonate and alkali chloride components in the parental melt.

    Origin of volatiles emitted by Plinian mafic eruptions of the Chikurachki volcano, Kurile arc, Russia : trace element, boron and sulphur isotope constraints

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Chemical Geology 478 (2018): 131-147, doi:10.1016/j.chemgeo.2017.10.009.Chikurachki is a 1816-m high stratovolcano on Paramushir Island, Kurile arc, Russia, which has repeatedly produced highly explosive eruptions of mafic composition. The present work is aimed at constraining the origin of volatile components (CO2, H2O, F, S, and Cl), along with B and S isotopic compositions in a series of phenocryst-hosted melt inclusions and groundmass glasses from basaltic andesite pyroclasts of the 1853, 1986, and prehistoric Plinian eruptions of the volcano. The ranges of volatile concentrations in melt inclusions (47–1580 μg/g CO2, 0.4–4.2 wt% H2O, 399–633 μg/g F, 619–3402 μg/g S and 805–1240 μg/g Cl) imply a sudden pressure release from ~ 460 through ~ 35 MPa that corresponds to ~ 1.2–16-km-depth range of magma ascent upon decompression. We conclude that rapid ascent of the volatile-rich basaltic magmas from ~ 16-km initial depth accompanied by near-surface bubble nucleation and growth, and subsequent magma fragmentation appear to be a primary reason for the Plinian character of the Chikurachki eruptions. Significant negative correlations of S with K, Zr, Nb, Ba, La, Ce, Pr (R = − 0.8 to − 0.9), no clear relationships of S with H2O, CO2 and Cl, but strong positive correlations of S/K2O with H2O/K2O, Cl/K2O and F/K2O preclude magma degassing to be the only process affecting volatile concentrations dissolved in the melt. The δ34S values of the studied inclusion and groundmass glasses range from − 1.6 to + 12.3‰, decrease with decreasing S, show significant positive correlations with H2O/K2O, Cl/K2O and F/Zr, and negative correlations with a number of incompatible trace elements. Neither open- nor close-system magma degassing can account for the observed range of δ34S. The δ11B values of the melt inclusions range from − 7.0 to + 2.4‰ with 13–23 μg/g B. The relationships of δ11B with B/K2O and B/Nb are inconsistent with magma contamination at shallow crustal depths. Linear character of 1/S vs. δ34S relationship suggests two-component mixing. The possible mixing end-members could be the magmas having similar major and trace element compositions, but strongly contrasting volatile contents and S isotopes. Based on the behaviour of fluid-mobile vs. fluid-immobile incompatible trace elements, we conclude that the subduction component likely represents a mixture of subduction sediment-derived melt with up to 60% of slab-derived fluid. Admixture of ~ 1–8% of the inferred subduction component to the depleted mantle wedge source is required to account for the compositional range of the Chikurachki melt inclusions, and ~ 0.4–10% to constrain the composition of Kurile arc mafic magmas.This work was benefited from the NENIMF financial support of AAG during his training as a SIMS research specialist, the NSF grant EAR 0911093 to AAG, and partially from the Russian Science Foundation grant #16-17-10145 to VSK and MEZ

    Copper-Containing Magnesioferrite in Vesicular Trachyandesite in a Lava Tube from the 2012-2013 Eruption of the Tolbachik Volcano, Kamchatka, Russia

    Get PDF
    Cu-rich magnesioferrite was found in vesicular basaltic trachyandesite in one of lava tubes (Duplex) that formed during the 2012-2013 eruption of the Tolbachik volcano, Kamchatka. This mineral is commonly associated with hematite, tenorite, halite, sylvite, and Ca-rich silicates (mainly, esseneite and Na-rich melilite) in high-temperature (800-1000 degrees C) reactionary zones (up to 100 mu m) covering vesicular rocks and lava stalactites in the Duplex tube. The mineral relationships of this assemblage indicate the following crystallization sequence: Ca-rich silicates + hematite -> Cu-rich magnesioferrite -> tenorite -> chlorides. This formed due to the reaction of hot gases containing Cu, alkalis, and Cl with solidified lava rock. The composition of magnesioferrite varies strongly in CuO (5.8-17.3 wt %; cuprospinel end-member-15-47 mol %), whereas the contents of other oxides are minor, indicating the main isomorphic substitution is Mg2+ Cu2+. Compositions with maximal CuO content nominally belong to Mg-rich cuprospinel: (Cu0.48Mg0.41Mn0.09Zn0.02Ca0.02) (Fe1.943+Al0.03Ti0.02)O-4. Increasing CuO content of the Duplex Cu-rich magnesioferrite is reflected in Raman spectra by moderate right shifting bands at approximate to 700-710 and 200-210 cm(-1) and the appearance of an additional band at 596 cm(-1). This supports the main isomorphic scheme and may indicate a degree of inversion in the spinel structure.Peer reviewe

    Oxygen isotopes and volatile contents of the Gorgona komatiites, Colombia: A confirmation of the deep mantle origin of H2O

    Get PDF
    We report O isotopes in olivine grains (Fo89–93) and volatile contents (CO2, H2O, F, S, Cl) in olivine-hosted melt inclusions from one Gorgona picrite and five komatiites with the aim of constraining the origin of H2O in these magmas. These samples have previously been analysed for major and trace elements and volatile concentrations (H2O, S, Cl) and B isotopes in melt inclusions. A distinctive feature of the included melts is relatively high contents of volatile components and boron, which show positive anomalies in, otherwise depleted, primitive mantle normalised trace and rare earth element patterns and range in δ11B from −11.5 to 15.6‰. In this study, the olivines were systematically analysed for O isotopes (1) in the centre of grains, (2) near the grain boundaries and, (3) as close as possible to the studied melt inclusions. The majority of olivines (∼66%) are “mantle”-like, ‰‰ 4.8‰≤δ18O≤5.5‰ , with a subordinate but still significant number (∼33%) above, and only 2 grains below, this range. There is no systematic difference between the central and marginal parts of the grains. Higher than “mantle” δ18OOl values are ascribed to low-T (<300 °C) serpentinisation along inner fractures and grain boundaries of olivine phenocrysts. The measured concentrations of volatile components in the melt inclusions corrected for the effects of post-entrapment crystallisation and H2O–CO2 exsolution in inclusion shrinkage bubbles are: 286–1748 μg/g CO2, 0.2–0.86 wt.% H2O, 48–82 μg/g F, 398–699 μg/g S and 132–198 μg/g Cl. They correspond to a pressure of 86±44MPa or ∼2.5-km crustal depth of olivine crystallisation. The correlations of S and, to a lesser extent, of H2O, with highly incompatible lithophile elements and the correlation of F with Cl, but no relationships of H2O with Cl, rule out shallow depth magma degassing and/or crustal contamination. Our new δ18O olivine and volatile component data combined with the existing, highly variable δ11B values for melt inclusions also support the deep mantle origin of H2O (and probably other volatiles) in the Gorgona mafic and ultramafic magmas

    Carbon compounds in the West Kimberley lamproites (Australia) : Insights from melt and fluid inclusions

    Get PDF
    Petrological and geochemical studies of lamproites can provide useful insights into the nature of their lithospheric mantle sources, but their geochemical and mineralogical diversity has complicated our understanding of their primary/parental melt composition, volatile (CO2, H2O) inventory and magmatic evolution. To help address this issue, we present a detailed study of different generations (primary, pseudo-secondary, secondary) of crystal, and melt and fluid inclusions in olivine, Cr-spinel and perovskite from three olivine lamproites in the Ellendale Field of the West Kimberley Province (Australia) in order to understand the composition and evolution of their parental magmas. Melt inclusions in the different host minerals and from each of these localities are broadly similar to each other and consist of glass, alkali/alkali-earth (Mg-Ca-K-Na-Ba) carbonates, phosphates and chlorides, in addition to minerals typical of lamproite groundmass (fluorapatite, perovskite, phlogopite, diopside, wadeite, Mg-ilmenite, Fe-Mg-Ti-Cr spinel). The dominant volatile species in the melt and fluid inclusions is CO2 based on Raman data. Heating experiments of melt/fluid inclusions in olivine show significant phase transformations in which the carbonate may separate into an immiscible carbonate-rich sulphatebearing fraction or exsolve a CO2 fluid. Our results indicate that carbonates, along with alkali/alkali-earths, halogens and sulphur, became progressively concentrated in the West Kimberley lamproitic magmas during crystallisation, leading to the entrapment of a complex array of daughter minerals, some not previously reported from lamproites and, in some inclusions, immiscible carbonate melt. The widespread occurrence of daughter carbonates in melt/fluid inclusions in lamproite minerals is at odds with their apparent paucity in the lamproite groundmass. The presence of carbonate and the abundance of CO2-rich and H2O-poor melt and fluid inclusions are attributed to the preferential partitioning of CO2 into the vapour and retention of H2O in the magma during degassing, coupled with H2O loss by post-entrapment modification of the inclusions through H+ diffusion. (C) 2022 Published by Elsevier B.V. on behalf of International Association for Gondwana Research.Peer reviewe

    Mantle melting versus mantle metasomatism - The chicken or the egg dilemma

    Get PDF
    Most eclogitic mantle xenoliths brought to the surface exhibit a certain degree of enrichment with incompatible elements, usually attributed to the effect of mantle metasomatism by a putative metasomatic fluid. The metasomatic overprint is represented mainly by enrichments in Na, K, Ba, Ti and LREE and the original source of this fluid remains unknown. In this paper, we present a detailed petrological study of a typical eclogitic mantle xenolith from the Roberts Victor kimberlite mine in South Africa. We find that its textural and mineralogical features present strong evidence for incipient melting. The melting assemblage we observe did not necessarily require introduction of additional components, that is: in-situ melting alone could produce highly incompatible element enriched melt without involvement of a hypothetical and speculative “metasomatic event”. Due to the higher abundance in incompatible elements and lower solidus temperature than peridotites, mantle eclogites, some of which represent previously subducted oceanic crust, are much more plausible sources of mantle metasomatism, but on the other hand, they can be considered as highly metasomatised themselves. This brings us to the “chicken or egg” dilemma – was the secondary mineral assemblage in mantle lithologies a result or a source of mantle metasomatism?The research in Oxford University was financially supported by NERC grant NE/L010828/1 to ESK and by European Research Council grant 267764 to B. Wood. Research at ANU was supported by ARC Future Fellowship to GM

    The discovery of kimberlites in antarctica extends the vast gondwanan cretaceous province

    Get PDF
    Kimberlites are a volumetrically minor component of the Earth's volcanic record, but are very important as the major commercial source of diamonds and as the deepest samples of the Earth's mantle. They were predominantly emplaced from ≈2,100 Ma to ≈1

    Volcano–Plutonic Complex of the Tumrok Range (Eastern Kamchatka): An Example of the Ural-Alaskan Type Intrusion and Related Volcanic Series

    Get PDF
    Zoned plutons, composed of dunites, pyroxenites, and gabbroic rocks, have been referred to as the Ural-Alaskan type complexes (UA-complexes) and occur in numerous paleo-arc settings worldwide. Many of these complexes are source rocks for economic placers of platinum-group metals. Thus, it is important to understand how UA-complexes form and the origin and behavior of platinum-group elements (PGEs). It is widely assumed that the UA-complexes result from differentiation of supra-subduction high-Ca high-Mg sub-alkaline magmas. However, there is a lack of direct evidence for the existence and differentiation of such magmas, mainly because cases of UA-complexes being spatially and temporally linked to co-genetic volcanics are unknown. We studied an UA-complex from the Tumrok range (Eastern Kamchatka) where a dunite-clinopyroxenite-gabbro assemblage is spatially and temporary related to high-Ca volcanics (i.e., picrites and basalts). Based on the mineral and chemical composition of the rocks, mineral chemistry, and composition of melt inclusions hosted within rock-forming minerals, we conclude that the intrusive assemblage and the volcanics are co-genetic and share the same parental magma of ankaramitic composition. Furthermore, the compositions of the plutonic rocks are typical of UA-complexes worldwide. Finally, the rocks studied exhibit a full differentiation sequence from olivine-only liquidus in picrites and dunites to eutectic crystallization of diopside or hornblende, plagioclase, and K-Na feldspar in plagio-wehrlites and gabbroic rocks. All these results make the considered volcano–plutonic complex a promising case for petrological studies and modelling of UA-complex formation

    Geodynamic Significance of the Mesoproterozoic Magmatism of the Udzha Paleo-Rift (Northern Siberian Craton) Based on U-Pb Geochronology and Paleomagnetic Data

    Get PDF
    The emplacement age of the Great Udzha Dyke (northern Siberian Craton) was determined by the U-Pb dating of apatite using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). This produced an age of 1386 +/- 30 Ma. This dyke along with two other adjacent intrusions, which cross-cut the sedimentary units of the Udzha paleo-rift, were subjected to paleomagnetic investigation. The paleomagnetic poles for the Udzha paleo-rift intrusions are consistent with previous results published for the Chieress dyke in the Anabar shield of the Siberian Craton (1384 +/- 2 Ma). Our results suggest that there was a period of intense volcanism in the northern Siberian Craton, as well as allow us to reconstruct the apparent migration of the Siberian Craton during the Mesoproterozoic.Peer reviewe
    corecore