4 research outputs found

    <i>Halanaerobium polyolivorans</i> sp. nov.—A Novel Halophilic Alkalitolerant Bacterium Capable of Polyol Degradation: Physiological Properties and Genomic Insights

    No full text
    A search for the microorganisms responsible for the anaerobic degradation of osmoprotectants in soda lakes resulted in the isolation of a novel halophilic and alkalitolerant strain, designated Z-7514T. The cells were Gram-stain-negative and non-endospore-forming rods. Optimal growth occurs at 1.6–2.1 M Na+, pH 8.0–8.5, and 31–35 °C. The strain utilized mainly sugars, low molecular polyols, and ethanolamine as well. The G+C content of the genomic DNA of strain Z-7514T was 33.3 mol%. Phylogenetic and phylogenomic analyses revealed that strain Z-7514T belongs to the genus Halanaerobium. On the basis of phenotypic properties and the dDDH and ANI values with close validly published species, it was proposed to evolve strain Z-7514T within the genus Halanaerobium into novel species, for which the name Halanaerobium polyolivorans sp. nov. was proposed. The type strain was Z-7514T (=KCTC 25405T = VKM B-3577T). For species of the genus Halanaerobium, the utilization of ethylene glycol, propylene glycol, and ethanolamine were shown for the first time. The anaerobic degradation of glycols and ethanolamine by strain Z-7514T may represent a novel metabiotic pathway within the alkaliphilic microbial community. Based on a detailed genomic analysis, the main pathways of catabolism of most of the used substrates have been identified

    Syntrophic Growth of <i>Biomaibacter acetigenes</i> Strain SP2 on Lactate and Glycerol

    No full text
    A moderately thermophilic Gram-positive chemo-organotrophic bacterium, strain SP2, was isolated by serial dilutions with crotonate and yeast extract as substrates from a butyrate-degrading methanogenic enrichment obtained from thermophilically digested sludge of the Kuryanoskaya wastewater treatment plant (Moscow, Russia). Cells of strain SP2 are spore-forming rods, sometimes occurring in short chains. The bacterium is an obligate anaerobe that grows at temperatures from 20 to 70 °C (55–60 °C optimum) within a pH range of 3.5–8 (7.5 optimum) and with NaCl concentrations of up to 2.5%. The strain utilized yeast extract and simple sugars as carbon and energy sources. Thiosulfate was used as an electron acceptor when grown on sucrose, resulting in the formation of hydrogen sulfide and the accumulation of elemental sulfur globules inside the cells. Strain SP2 is phylogenetically related to Biomaibacter acetigenes strain SK-G1T as revealed by comparison with the 16S rRNA gene (99.9% identity) and genome (ANI 99%, dDDH 90%) of both strains. It is interesting that strain SP2 was capable of syntrophic conversion of glycerol and lactate when co-cultivated with hydrogenotrophic methanogen, which was not previously shown for the SK-G1T type of strain. The isolation and in-depth study of new facultatively syntrophic microorganisms is important for wastewater treatment ecotechnologies due to their ability to switch to an alternative source of carbon and energy and therefore greater resistance to changing environmental conditions in bioreactors
    corecore