595 research outputs found
Mind the Gap – International Comparison of Cyclical Adjustment of the Budget
Cyclically adjusted budget balance (CAB) is a widely cited and widely used concept in the evaluation of fiscal situations. The key idea behind it involves the identification of potential levels of economic variables. There are two recently used methods: the aggregate approach and the unconstrained disaggregate approach. In this paper we apply them on USA, Japan and 25 EU member countries to demonstrate that both approaches could be the source of considerable bias. While the aggregate approach cannot cope with different shocks, the unconstrained disaggregate method involves systematic bias and do not contain theoretical consideration. In order to avoid these distortions we present an alternative framework, which is able to incorporate the advantages of both approaches. Combining arbitrary output gap and constrained multivariate HP filter induces theoretically motivated disaggregation where we also exploit the implication of production function parameterisation. We found that the price effect resulting from the composition effect of different deflators could play an important role in evaluation of the fiscal position. To display the importance of composition effect we analyse the cyclical components of Finnish, Hungarian and Italian budget balances more in detail.cyclically adjusted budget deficit, price gap, business cycles, constrained multivariate HP filter
Inhibition of the activity of pro-inflammatory secretory phospholipase A2 by acute phase proteins
Pro-Inflammatory non-pancreatic phospholipase A2 (sPLA2) is markedly over-expressed in acute systemic and chronic local inflammatory processes. Since in acute phase reaction sPLA2 is often over-expressed simultaneously with acute phase proteins (APP), it is important to determine whether APP interacts with sPLA2. We tested ten APPs for interaction with sPLA2 using as a substrate multilamellar Hposomes composed either of PC:Lyso PC or PE:Lyso PE. Using PC:Lyso PC substrate, CRP, lactoferrin and SAP were found to inhibit sPLA2 activity with an IC50 of 25 μg/ml, 7.5 μg/ml and 50 μg/ml, respectively, corresponding to 0.21 μM, 0.1 μM and 0.21 μM respectively. Using PE:Lyso PE substrate only SAP was inhibitory, with an IC50 of 10 μg/ml (0.04 μM). Phosphorylcholine abolished the inhibitory activity of CRP but not of SAP or lactoferrin. Addition of phosphorylethanolamine or of excess calcium had no effect on the inhibitory activity of APP. Limulin, lysozyme, transferrin, β2-microglobulin, α2-macroglobulin, human and bovine albumins had no effect on sPLA2 activity. Therefore neither the structure of pentraxins, or ironbinding, bacteriostatic property or amyloidogenic property preclude whether APP modulates sPLA2 activity. Inhibition of pro-inflammatory sPLA2 by APP may be one of the protective mechanisms of the acute phase reaction
Exploring Agricultural Production Systems and Their Fundamental Components with System Dynamics Modelling
Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex ways to influence production sustainability. In a mixed-methods approach, we combine qualitative and quantitative data to develop and simulate a system dynamics model that explores the systemic interaction of these drivers on the economic, environmental and social sustainability of agricultural production. We then use this model to evaluate the role of each driver in determining the differences in sustainability between three distinct production systems: crops only, livestock only, and an integrated crops and livestock system. The result from these modelling efforts found that the greatest potential for sustainability existed with the crops only production system. While this study presents a stand-alone contribution to sector knowledge and practice, it encourages future research in this sector that employs similar systems-based methods to enable more sustainable practices and policies within agricultural production
Secretion of Food Allergen Proteins in Saliva
RATIONALE: Peanut proteins were found to be secreted in 50% of lactating women’s breast milk. We wanted to develop a testing method to predict the secretion of peanut protein in breast milk. The secretion of food protein in saliva was hypothesized to be a possible predictor of secretion of foods in breast milk following ingestion. METHODS: Non-allergic volunteers, some lactating, ingested 50 grams of either whole peanuts, peanut milk or cow’s milk and various immunoassays were utilized to analyze for the presence of peanut or cow’s milk proteins in saliva and breast milk. Saliva and breast milk samples were subjected to SDS-PAGE, Western blot and ELISA analysis with anti-raw and roasted peanut and anti-alpha-casein antibodies and pooled serum IgE from peanut allergic individuals. RESULTS: Peanut protein levels in breast milk were undetectable using Western blot analysis and inconsistent with ELISA analysis. However, peanut proteins around 20 and 30 kDa that reacted with anti-roasted peanut antibody were detected, 6-18 hours following ingestion, in saliva of different individuals. An 18 KDa band that reacts with anti-alpha casein antibody was also detected in saliva 6-18 hours following ingestion. CONCLUSIONS: Secretion of food allergen proteins or peptides in saliva several hours following ingestion may have important implications for delayed allergic reaction by sensitive patients. Also, due to the fact that these proteins or peptides survive digestive enzymes, become absorbed into the blood stream and are subsequently secreted in biological fluids may indicate that they are most likely the sensitizing or tolerizing agent within an allergic food. Funding: National Peanut Board, USD
Tenidap sodium inhibits secretory non-pancreatic phospholipase A2 synthesis by foetal rat calvarial osteoblasts
Tenidap (TD) was initially defined as a dual inhibitor of cyclooxygenase and lipoxygenase. This study was designed to assess its inhibitory activity against proinflammatory phospholipase A2. This study shows that TD inhibits the synthesis of pro-inflammatory secretory non-pancreatic phospholipase A2 (sPLA2). Concentrations as low as 0.25 μg/ml (0.725 μM) reduced the release of sPLA2 by 40% from foetal rat calvarial osteoblasts stimulated with IL-1β and TNFα, whereas a concentration of 2.5 μg/ml (7.25 μM) reduced the release by over 80%. TD also markedly reduced the release of sPLA2 from unstimulated cells. There was no direct inhibition of sPLA2 enzymatic activity by TD in vitro. Northern blot analysis showed that TD did not affect the sPLA2 mRNA levels; however, immunoblotting showed a dose-dependent reduction in sPLA2 enzyme. These results, together with a marked reduction in sPLA2 enzymatic activity, suggest that TD inhibits sPLA2 synthesis at the post-transcriptional level. Therefore TD seems to inhibit the arachidonic acid cascade proximally to cyclooxygenase and lipoxygenase and its anti-inflammatory activity may be related at least in part to the inhibition of sPLA2 synthesis
Phospholipid composition of reconstituted high density lipoproteins influences their ability to inhibit endothelial cell adhesion molecule expression
Manuscript received 3 September 1999 and in revised form 9 March 2000.The ability of different phosphatidylcholine (PC) species to inhibit cytokine-induced expression of vascular cell adhesion molecule 1 (VCAM-1) in human umbilical vein endothelial cells (HUVECs) was investigated. PC species containing palmitoyl- in the sn -1 position and palmitoyl- (DPPC), arachidonyl- (PAPC), linoleoyl- (PLPC) or oleoyl- (POPC) in the sn -2 position were compared. These PC species were studied as components of reconstituted high density lipoproteins (rHDL) (containing apolipoprotein A-I [apoA-I] as the sole protein) or as small unilamellar vesicles (SUVs). The rHDL containing PLPC and PAPC inhibited VCAM-1 expression in activated HUVECs by 95 and 70%, respectively, at an apoA-I concentration of 16 m M . At this concentration of apoA-I, POPC rHDL inhibited by only 16% and DPPC rHDL did not inhibit at all. These differences could not be explained by differential binding of the rHDL to HUVECs. The same hierarchy of inhibitory activity was observed when these PC species were presented to the cells as SUVs but only when the SUVs also contained an antioxidant. It was concluded that rHDL PC is responsible for their inhibitory activity and that this varies widely with different PC species. —Baker, P. W., K-A. Rye, J. R. Gable, M. A. Vadas, and P. J. Barter. Phospholipid composition of reconstituted high density lipoproteins influences their ability to inhibit endothelial cell adhesion molecule expression. J. Lipid Res. 2000. 41: 1261–1267.Paul W. Baker, Kerry-Anne Rye, Jennifer R. Gamble, Mathew A. Vadas, and Philip J. Barte
Dynamics of Measured and Simulated Dissolved Phosphorus in Runoff from Winter-Applied Dairy Manure
Agricultural P loss from fields is an issue due to water quality degradation. Better information is needed on the P loss in runoff from dairy manure applied in winter and the ability to reliably simulate P loss by computer models. We monitored P in runoff during two winters from chisel-tilled and no-till field plots that had liquid dairy manure applied in December or January. Runoff total P was dominated by nondissolved forms when soils were bare and unfrozen. Runoff from snow-covered, frozen soils had much less sediment and sediment-related P, and much more dissolved P. Transport of manure solids was greatest when manure was applied on top of snow and runoff shortly after application was caused by snowmelt. Dissolved P concentrations in runoff were greater when manure was applied on top of snow because manure liquid remained in the snowpack and allowed more P to be available for loss. Dissolved runoff P also increased as the amount of rain or snowmelt that became runoff (runoff ratio) increased. The SurPhos manure P runoff model reliably simulated these processes to provide realistic predictions of dissolved P in runoff from surface manure. Overall, for liquid dairy manure applied in winter, dissolved P concentrations in runoff can be decreased if manure is applied onto bare, unfrozen soil, or if runoff ratio can be reduced, perhaps through greater soil surface roughness from fall tillage. Both management approaches will allow more manure P to infiltrate into soil and less move in runoff. SurPhos is a tool that can reliably evaluate P loss for different management and policy scenarios for winter manure application
Fall Tillage Reduced Nutrient Loads from Liquid Manure Application During the Freezing Season
Reducing agricultural runoff is important year round, particularly on landscapes that receive wintertime applications of manure. No-tillage systems are typically associated with reduced runoff loads during the growing season, but surface roughness from fall tillage may aid infiltration on frozen soils by providing surface depressional storage. The timing of winter manure applications may also affect runoff, depending on snow and soil frost conditions. Therefore, the objective of this study was to evaluate runoff and nutrient loads during the freezing season from combinations of tillage and manure application timings. Six management treatments were tested in south-central Wisconsin during the winters of 2015–2016 and 2016–2017 with a complete factorial design: two tillage treatments (fall chisel plow vs. no-tillage) and three manure application timings (early December, late January, and unmanured). Nutrient loads from winter manure application were lower on chisel-plowed versus untilled soils during both monitoring years. Loads were also lower from manure applied to soils with less frost development. Wintertime manure applications pose a risk of surface nutrient losses, but fall tillage and timing applications to thawed soils can help reduce loads
- …