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Core ideas 
• Fall tillage reduced winter runoff and manure nutrient losses compared to no-tillage 
• Nutrient loads were greatest on no-tillage soil with winter-applied liquid manure 
• Timing liquid manure application to unfrozen or partially-thawed soil reduced loss 
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ABSTRACT 

Reducing agricultural runoff is important year-round, particularly on landscapes that receive wintertime applications 
of manure. No-tillage systems are typically associated with reduced runoff loads during the growing season, but 
surface roughness from fall tillage may aid infiltration on frozen soils by providing surface depressional storage. The 
timing of winter manure applications may also affect runoff depending on snow and soil frost conditions. Therefore, 
the objective of this study was to evaluate runoff and nutrient loads during the freezing season from combinations of 
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tillage and manure application timings. Six management treatments were tested in south-central Wisconsin during 
the winters of 2015–16 and 2016–17 with a complete factorial design: two tillage treatments (fall chisel plow versus 
no-tillage) and three manure application timings (early December, late January, and unmanured). Nutrient loads 
from winter manure application were lower on chisel-plowed versus untilled soils during both monitoring years. 
Loads were also lower from manure applied to soils with less frost development. Wintertime manure applications 
pose a risk of surface nutrient losses, but fall tillage and timing applications to thawed soils can help reduce loads. 

INTRODUCTION 

Balancing production with environmental sustainability is a critical challenge for manure 

management in animal production systems. Land-application of manure is a longstanding practice 

for recycling farm nutrients back to cropland, but research has demonstrated that surface manure 

application to fields without incorporation can be a significant source of nitrogen (N) and 

phosphorus (P) losses in surface runoff (Daniel et al., 1998; Kleinman and Sharpley, 2003; Vadas 

et al., 2007). For many northern U.S. states, as well as Canadian provinces and northern European 

countries, manure is applied year-round, and must be left unincorporated during winter because of 

the presence of frozen soils and snow. Winter application can help reduce manure storage 

expenses, provide more time for field operations in other seasons, and avoid soil compaction, but 

it can lead to elevated runoff risks from frozen soils, snowmelt, and rain-on-snow events 

(Srinivasan et al., 2006; Liu et al., 2017).  

Over half of annual runoff can occur during the winter season in temperate regions with snow 

and frozen soils present (Good et al., 2012; Stuntebeck et al., 2011), and consequently there are 

regulations and recommendations restricting winter manure spreading to protect water quality 

(Srinivasan et al., 2006; Liu et al., 2018). Limited data exist, however, that quantify manure 

nutrient loads in runoff following winter application. Most research has been observational with 

little replication, has taken place prior to 1980, and has focused on solid manure (13.8–55.5 % dry 

matter, DM), which was most common at that time (Hensler et al., 1970; Converse et al., 1976; 

Klausner et al., 1976; Phillips et al., 1981; Steenhuis et al., 1981; Young and Mutchler, 1976; 
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Young and Holt, 1977). Generally, nutrient loads in runoff were greater from manure applied early 

in the winter to frozen ground without snowpack, compared to late-winter applications on top of 

frozen ground with snowpack (Hensler et al., 1970; Converse et al., 1976; Young and Mutchler, 

1976). The mulching effect of solid-bedded manure explained this trend. When applied onto snow, 

solid manure reduced runoff by retarding melt and providing more time for snowmelt and manure 

nutrients to infiltrate into soil (Kongoli and Bland, 2002).   

The plot-scale research of the 1970s focused on solid manure and may not directly relate to 

runoff from more liquid forms (< 11% DM). Since the 1990s, the number of larger dairy farms 

increased by 70%, smaller farms (<500 head) decreased by 49%, and 90% of farms with greater 

than 200 head now produce liquid manure (USDA-NASS, 2010). This manure is expected to 

interact differently with snowpack than solid manure. For example, liquid manure applied onto 

snow infiltrates and remains in the snowpack instead of maintaining a thick, insulative layer 

(Kongoli and Bland, 2002; Vadas et al., 2017; Vadas et al., 2018) and may be prone to runoff 

because of its high water content. In a comparison of winter-applied liquid swine manure (4% 

DM) to turkey litter (57% DM), nutrient runoff loads were greater from the liquid manure, despite 

greater nutrient amounts applied with the litter (Owens et al., 2011). Liquid manure applications 

may pose greater risk to nutrient loss because the infiltrated manure liquid has greater physical 

contact with snowmelt water for nutrient release, as opposed to solid manure that remains on the 

snow in a discrete layer (Vadas et al., 2017). Other field research investigated liquid dairy manure 

applications at the basin scale (7-16 ha) and found the greatest nutrient loads from liquid manure 

occurred when applied within one week of a runoff event (Komiskey et al., 2011). However, runoff 

loads could not be attributed to specific practices because of multiple manure timings, application 

rates, manure types, and lack of replication. Research is still needed to understand the impact of 
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specific management practices and runoff hydrology processes to reliably quantify the risk for 

nutrient loads from winter manure application.  

The effect of tillage on winter runoff and nutrient loads is also unclear, particularly for frozen 

soils (Komiskey et al., 2011). During the growing season, no-tillage is generally considered to 

increase infiltration and maintain soil aggregate stability, thereby reducing nutrient transport via 

erosion and runoff (Zhang et al., 2006). However, as soils freeze and infiltration decreases, the 

smooth surface of no-tillage may increase runoff (Ranaivoson et al., 2005). Nutrient accumulation 

near the soil surface from lack of tillage may increase dissolved nutrient loads compared to 

conventional tillage (Tiessen et al., 2010). Moreover, wintertime nutrient release from vegetation 

in no-tillage, perennial forage systems can elevate losses (Liu et al., 2014). Young and Mutchler 

(1976) compared runoff for continuous corn with fall tillage and harrowing versus no-tillage 

alfalfa, both with winter-applied, solid dairy manure. Despite tilling parallel to the slope, 

significantly greater runoff occurred from alfalfa, with winter nutrient loads over five times greater 

on soils with no-tillage. Depending on study year, 9 – 42 kg ha-1 more total nitrogen and 3 – 6 kg 

ha-1 more total phosphorus were lost from manure applied to frozen soils with no-tillage versus 

tillage (nutrient release from alfalfa accounted for up to 0.5 kg P ha-1 of losses based on the 

unmanured controls). Similarly, Hansen et al. (2000) observed that springtime nutrient loads 

decreased with increasing surface roughness across three tillage systems (ridge-tillage, chisel plow 

with spring disking, and fall moldboard), despite tillage parallel to the slope.  

Ultimately, the impact of management to reduce nutrient runoff from winter-applied liquid 

manure has been difficult to assess from literature data due to differences in study designs, wide-

ranging weather within and between years, and a lack of data to analyze the hydrologic and manure 

property controls on nutrient loss (e.g. Klausner et al., 1976; Owens et al., 2011; Komiskey et al., 
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2011). Our main goal is to improve the understanding and modeling of biochemical and physical 

processes controlling frozen-soil and snowmelt infiltration, runoff, and nutrient loads from soil 

and winter-applied dairy manure through a series of lab and plot-scale experiments (Vadas et al., 

2017; 2018). The objective of this study was to investigate winter surface runoff and nutrient loads 

for variations in tillage and timing of winter manure application that are common management 

practices in temperate states. Specifically, we tested tillage with a fall chisel plow versus no-tillage, 

and manure applications timed 1) early in the freezing season (early-December), 2) later in the 

freezing season (late-January), and 3) with unmanured controls. Here, we report plot-scale 

observations on the effect of tillage and winter manure application timing on overall winter runoff 

amounts and nutrient loads across the freezing season. Vadas et al. (this issue) describes runoff 

hydrology and nutrient concentrations on an event-by-event basis. We hypothesized that fall tillage 

will reduce runoff through surface roughness and manure applications later in the freezing season 

will result in greater losses because of greater frost development and snow accumulation. 

MATERIALS AND METHODS 

Site description and treatments 

We conducted the study at the University of Wisconsin Arlington Agricultural Research 

Station (AARS; 43˚17’ N 89˚21’ W) using 18 plots (5 x 15 m each) established on a 5.8% slope 

with south-facing aspect and a silt-loam texture (Saybrook-Ringwood-Griswald series 

association). For four years prior to the study (2011–14), the field was under no-tillage alfalfa. 

During the study (2015–17), the field was in continuous corn for silage with a 76-cm row spacing. 

All field operations were performed along the contour. 

We evaluated two tillage and three manure timing treatments in a complete factorial design 

during two winters (2015–16 and 2016–17). Tillage treatments were tillage with a fall chisel and 
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spring soil finisher (CT) and no-tillage (NT), to result in rough and smooth surfaces, respectively, 

during the winter. The soils were tilled on 02 October 2015 and 05 October 2016. In fall 2015, 

Bray-1 soil test P was 32 and 51 mg kg-1 for CT and NT, respectively, at a 0-2.5 cm depth. In fall 

2016, Bray-1 soil test P was 31 and 39 mg kg-1 for CT and NT at a 0-2.5 cm depth. Timing of 

manure applications included early-December at the typical onset of the soil freezing (D), late-

January (J), and an unmanured control (C). The manure application dates were 10 December 2015, 

26 January 2016, 09 December 2016, and 27 January 2017. All treatment combinations were 

replicated in triplicate. The experimental design was a paired-plot design in which there were 10 

pairs (Supplemental Figure 1). Five of the pairs were assigned to NT and five pairs were assigned 

to CT, arranged in a completely randomized design. Two of the three manure treatments were 

assigned within each pair, completely at random, but balanced between NT and CT treatments. 

There were two “empty” plots, assigned at random within the field area. 

We manually applied liquid dairy manure at a rate of 37.4 kL ha-1. Six to 12 samples collected 

during each application were analyzed by the University of Wisconsin Soil and Forage Analysis 

Laboratory (Marshfield, WI, USA) (Table 1). Total N was measured by using methods of Peters 

et. al. (2003), Section 3.2. After dry ashing, P and potassium concentrations were measured with 

colorimetric spectrophotometry (Section 5.2). Total solids (TS) and volatile solids (VS) were 

measured as percentages according to Standards Methods 2540 B and 2540 E (APHA, 1996).  

Table 1. The dates and nutrient additions for each manure application with the corresponding field conditions during 
the application dates. 

Application 
Date 

Manure Analysis†   Field Conditions† 
TN TP TK TS VS  Frost Depth 

[cm] 
SWE 
[mm] ---- [kg ha-1] ---- --- [%] ---  

10 Dec. 2015 65.9  8.7 68.2 2.0 1.3  0.0 0 
26 Jan. 2016 80.6  11.3 56.3 2.9 2.0  0.0 – 50.1 24 
09 Dec. 2016 102.9  17.8 53.1 5.8 4.4  0.0 – 10.4 10 
27 Jan. 2017 99.2  14.4 57.5 5.5 4.1  6.2 – 43.9 31 

†TN = total nitrogen, TP = total phosphorus, TK = total potassium, TS = total solids, and VS = volatile solids from 
manure on each of the four application dates. SWE = snow-water equivalent. 
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Field measurements 

An on-site weather station was used to measure air temperature (VP-3, Decagon Devices Inc., 

Pullman WA) and precipitation as rainfall (RG3, Onset Computer Corporation, Bourne, MA) or 

liquid equivalent of snowfall (adaptor: CS705, Campbell Scientific, Inc., Logan, UT). Soil frost 

depth was manually measured with one frost tube per plot (Rickard and Brown, 1972; MacKay, 

1973), and snow depth with three snow sticks installed equidistantly along the slope of each plot. 

Snow-water equivalent (SWE, depth of water stored as snow in mm) was calculated by measuring 

snow density with a snow corer in each plot (U.S. Army Corps of Engineers, 2015). Manual 

measurements of frost and snow were collected at least once per week, and up to daily during 

precipitation and thaw events.  

Runoff volumes were monitored from each plot with a storm-integrated, discharge-weighted 

collection system (Bonilla et al., 2006; Vadas and Powell, 2013). Earthen berms hydrologically 

isolated each plot. Runoff was directed into a passive, divider collection system that consisted of 

three, sequential 19 L buckets for each plot. The first two buckets each had a steel crown with 24 

precision-cut, V-slot weirs that directed 1/24th of the runoff water to the subsequent bucket, 

allowing for up to a 152 mm (11.4 kL) runoff event to be measured. After each runoff event, we 

measured the height of the water in the buckets with a meter stick to the nearest mm. To determine 

nutrient loads for each plot, we collected a water sample from each bucket as the water was 

agitated. The total runoff volume and nutrient loads for each plot were then calculated from the 

dilution ratio of the weirs. “Runoff ratios” (the proportion of runoff to the total water that interacted 

with manure through rain and snowmelt) were also calculated and are described in more detail by 

Vadas et al. (this issue).  
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Runoff samples were stored at 4°C. Unfiltered samples were analyzed for TS and VS (APHA, 

1995). Acid preserved (2 mL L-1 H2SO4) samples were analyzed for Total Kjeldahl N (TKN; 

USEPA, 1993) and Total Kjeldahl P (TKP; SEAL Analytical Inc., 2015) with an automated 

colorimetric analyzer after digestion (AQ2 Discrete Analyzer, SEAL Analytical Brand, Mequon, 

WI). Filtered samples (0.45 µm) were analyzed for dissolved reactive P (DRP; Murphy and Riley, 

1962), ammonium-N (NH4-N) with QuickChem Methods 12-107-06-2-A (NH4-N), and nitrate-N 

(NO3-N) with QuickChem Methods 12-107-04-1-B (NO3-N) on a Lachat automated analyzer. 

Total N (TN) was calculated as the sum of TKN and NO3-N. Nutrient loads were calculated by 

multiplying the nutrient concentrations by the runoff volume for each plot.  

Statistical Analysis 

We tested total runoff volume and cumulative nutrient loads (kg ha-1) across three monitoring 

periods each year by summing all events for each plot for each period. Periods included “pre-

freezing”, “frozen-ground”, and “post-freezing”, which accounted for changes in hydrology from 

soil frost dynamics. Pre-freezing was from the start of monitoring on 24 Nov. until the soil froze 

(we considered the soil to be frozen when 0.5 cm of soil frost persisted for at least 24 hours). 

“Frozen-ground” was when frost was present in all or part of the soil profile, and “post-freezing” 

was when the soil profile fully thawed until the end of monitoring on 30 Apr. each year. 

Corresponding dates for all periods are in Table 2. Frozen-ground and post-freezing periods of 

2016–17 were discontinuous because the soil thawed between 23 Feb. and 02 Mar. 2017, and 

refroze on 03 Mar. 2017. The number of runoff events for all periods is in Table 2.  
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Table 2. Pre-freezing, frozen-ground, and post-freezing periods during the 2015–16 and 2016–17 monitoring 
seasons according to soil frost dates. Precipitation for each period is given as rainfall and snowfall, with snowfall 
expressed in liquid equivalents (SWE). Corresponding runoff events are given for soils with no-tillage (NT) and fall 
tillage with a chisel plow (CT). 

Year Period 
# Days 
Frozen 

Precipitation 
-- [mm] -- 

# Runoff  
Events  

Rain SWE NT CT 

2015–
2016 

Pre-freezing 24 Nov – 29 Dec    74 132 7 2 0 
Frozen-ground 30 Dec – 11 Mar 24 24 5 1 
Post-freezing 12 Mar – 30 Apr 105 17 2 0 

2016–
2017 

Pre-freezing 24 Nov – 06 Dec   94† 75 12 1 0 
Frozen-ground 07 Dec – 22 Feb, 03 – 20 Mar 102 87 8 6 
Post-freezing 23 Feb – 02 Mar, 21 Mar – 30 Apr 163 7 1 0 

†The frozen-ground and post-freezing periods of 2016–17 are discontinuous because the soil thawed between 23 
Feb. and 02 Mar. 2017, and refroze by 03 Mar. 2017. 
 

We analyzed data with the GLIMMIX procedure of SAS® software (version 9.4, Copyright © 

2013, SAS Institute Inc., Cary, NC, USA). Slope position, pair, and pair x tillage were treated as 

random effects and Akaike Information Criterion (AIC) was used to determine which random 

effects belonged in the model. Tillage, manure treatments, and their interactions were the only 

fixed effects. Data were modeled using the lognormal distribution, which resulted in residual plots 

that generally demonstrated randomly distributed errors and homogenous variances. Fixed effects 

of tillage, manure timing, and their interaction were assessed by differences of least squares means 

with the Bonferroni adjustment for multiple comparisons (α=0.05). The interaction of manure 

timing with tillage was evaluated by computing and testing simple effects of manure timings 

within each of the tillage treatments. All significance tests were conducted on lognormal data with 

the log transformation and least squares means were all back-transformed prior to presentation in 

tables and figures. Standard errors of back-transformed means were computed according to the 

Taylor expansion (Stroup, 2013).  
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RESULTS AND DISCUSSION 

Hydrology 

Weather and soil freezing conditions are drivers of runoff hydrology during the winter, and 

conditions of the two monitoring seasons caused significant differences in runoff hydrology. In 

2015–16, the soil froze on 30 December, 41 days later than the 10-year average (University of 

Wisconsin, 2010), which resulted in the December manure application occurring during the pre-

freezing period and the January application during the frozen-ground period. Most precipitation 

fell as rain (Figure 1a, Table 2) during the pre- and post-freezing periods (12 weeks, 84% of 

precipitation) compared to the frozen-ground period (11 weeks, 16%). In December 2015, total 

precipitation was over two times greater than normal, while air temperature was seven degrees 

greater and above freezing (1981–2010; NOAA, 2017). Weather during January 2016 was near 

normal, but February 2016 had about one-third less precipitation and greater air temperature than 

normal (please see the supplemental table for more comparisons with normals). These conditions 

generated more frequent runoff events and statistically greater runoff volumes from NT soils (9 

events, 39 mm) than CT (1 event, 1 mm) (Tables 2 and 3, Figure 2). Runoff events from NT soils 

were fairly evenly distributed across unfrozen and frozen-ground periods (four and five events, 

respectively), and the single event from CT soils was during the frozen-ground period. The 

cumulative runoff volume from NT was ten times greater than CT, which was statistically 

significant (Table 3). Moreover, the seasonal average of runoff ratios calculated for each event 

(Nov. 2015 – Mar. 2016) were eight times greater across NT than CT, indicating NT was 

consistently more prone to runoff across rain and snowmelt events. The depressional storage 

created by the fall chisel plow operation caused these runoff differences, which corroborates the 

findings of Young and Mutchler (1976) and Hansen et al. (2000) on tillage. Soils with CT had a 



 

11 
 

network of ridges and furrows oriented along the contour, which provided areas for rainfall and 

snowmelt to pond, allowing more time for infiltration. From field observation, the smooth surface 

of NT soils was unable to retard runoff. 

 
Figure 1. Average hourly air temperature and total daily precipitation as rainfall or the liquid equivalent of snowfall 
during a) 2015–16 and d) 2016–17; the snow-water equivalent (SWE) of snowpack during b) 2015–16 and e) 2016–
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17; and the average frost depth during c) 2015–16 and f) 2016–17. Runoff event dates are designated in a, b, d, and 
e; and manure application dates are denoted with an asterisks in b and e. 

Table 3. Treatment means and p-values for comparisons of tillage, manure timing, and tillage x manure timing 
effects on total loads in the 2015–16 monitoring season†.  

Effect 
Runoff TKP DRP TN NH4+ TS VS 
[mm] ------------- [g ha-1] ------------ -- [kg ha-1] -- 

Ti
lla

ge
 Tillage with chisel (CT) 1.3 7.2 3.8 56.7 11.9 2.7 1.1 

No-Tillage (NT) 38.8 1432 209 5943 525 746 126 
CT vs. NT       p= 0.01 <0.01 <0.01 0.01 0.01 <0.01 0.01 

M
an

ur
e 

Ti
m

in
g 

Control (C) 5.5 55.2 8.8 336 38.3 33.8 9.0 
December (D) 4.2 42.5 9.3 291 27.2 26.2 6.5 
January (J) 15.7 443 269 2005 476 99.8 29.5 
C vs. D  p= 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
C vs. J p= 0.11 0.01 <0.01 0.02 0.01 0.11 0.12 
D vs. J p= 0.03 <0.01 <0.01 0.01 <0.01 0.03 0.03 

Ti
lla

ge
* 

M
an

ur
e 

Ti
m

in
g 

CT – C 0.9 3.5 1.1 33 5.3 1.6 0.9 
CT – D 0.4 1.5 0.8 17 3.1 0.9 0.4 
CT – J 5.7 70 61 326 104 13 5.0 
NT – C 33.0 881 68 3379 275 720 94 
NT – D 40.6 1197 113 5045 241 769 122 
NT  – J 43.5 2784 1192 12313 2191 750 174 
CT – C vs. CT – D  p= 0.60 0.34 1.00 0.66 1.00 0.93 0.56 
CT – C vs. CT – J p= 0.06 0.01 <0.01 0.03 0.01 0.04 0.10 
CT – D vs. CT – J p= 0.05 0.01 0.02 0.03 0.05 0.01 0.03 
NT – C vs. NT – D p= 1.00 1.00 0.94 1.00 1.00 1.00 1.00 
NT – C vs. NT – J p= 1.00 0.15 0.01 0.16 0.05 1.00 1.00 
NT – D vs. NT – J p= 1.00 0.21 0.01 0.26 0.02 1.00 1.00 

†TKP = total Kjeldahl phosphorus, DRP = dissolved reactive phosphorus, TN = total nitrogen, NH4
+ = ammonium, 

TS = total solids, VS = volatile solids. Tillage*Manure Timing treatments are: CT – C = chisel control, CT – D 
=chisel with December manure, CT – J = chisel with January manure, NT – C = no-tillage control, NT – D = no-
tillage with December manure, NT – J = no-tillage with January manure. 
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Figure 2. Treatment means (± standard error) of a) Total Kjeldahl phosphorus (TKP), b) dissolved reactive 
phosphorus (DRP), c) total nitrogen (TN), and d) runoff by tillage x manure timing treatments during the 2015–16 
monitoring season. Nutrients and runoff are shown within the pre-freezing, frozen-ground, and post-freezing 
periods, as well as the cumulative of the three periods (Total). [CT = fall tillage with a chisel plow, NT = no-tillage, 
Control = no manure, Dec = December manure timing, Jan = January manure timing]. 

In 2016–17, runoff was also more frequent and of greater magnitude from NT soils (10 events, 

44 mm) than CT soils (6 events, 31 mm), but not as much as in 2015-16 (Tables 2 and 4, Figure 

3). In fact, the 30% more runoff from NT soils was not statistically significant for tillage as a main 

effect (Table 4) and the runoff ratios of NT were only two times greater than CT in this second 

year. The greater runoff from CT in the second winter compared to the first winter is likely a 

function of contrasting soil freezing and weather conditions. Compared to 2015-16, soil froze 23 
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days earlier in 2016-17 (but still 18 days later than the 10-year average (University of Wisconsin, 

2010)), there was 44% more precipitation across the entire winter, and the frozen-ground period 

had nearly four times as much rain and snow (Figure 1 d-f, Table 2). Therefore, the pre-and post-

freezing periods (8.5 weeks) were shorter, the frozen–ground period (13.5 weeks) was longer and 

included both the December and January manure applications, and precipitation was more evenly 

distributed across the frozen-ground and non-frozen periods (42% and 58%, respectively) (Figure 

1, Table 2), which increased runoff ratios across tillages. Dec. 2016 – Feb. 2017 had two to three 

times greater monthly precipitation than normal, while air temperature was most notably greater 

than normal in February (NOAA, 2017). These conditions caused greater runoff on CT soils in 

this second winter season, as all six events were during the frozen ground period (Table 2). The 

weather conditions of 2016-17, particularly greater amounts of rain and more frequent melt events, 

increased runoff by both compromising and overflowing some ridges that structured the surface 

depressional storage on CT soil. 
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Table 4. Treatment means and p-values for comparisons of tillage, manure timing, and tillage*manure timing 
effects on total loads in the 2016–17 monitoring season†.  

Effect 
Runoff TKP DRP TN NH4+ TS VS 
[mm] ------------- [g ha-1] ------------ -- [kg ha-1] -- 

Ti
lla

ge
 Tillage with chisel (CT) 30.9 181 105 1464 146 56 23 

No-Tillage (NT) 43.5 608 319 2216 248 120 39 
CT vs. NT       p= 0.19 0.05 0.07 0.32 0.31 0.07 0.21 

M
an

ur
e 

Ti
m

in
g 

Control (C) 35.5 88 34 755 46 57 19 
December (D) 41.5 919 719 3400 778 101 38 
January (J) 33.4 452 253 2276 192 96 37 
C vs. D  p= 0.49 <0.01 <0.01 0.01 <0.01 <0.01 0.01 
C vs. J p= 1.00 0.01 0.01 0.02 0.02 <0.01 0.01 
D vs. J p= 0.14 0.12 0.05 0.24 0.01 1.00 1.00 

Ti
lla

ge
* 

M
an

ur
e 

Ti
m

in
g 

CT – C 35.1 61 25 896 48 45 21 
CT – D 26.3 369 291 2122 475 63 26 
CT – J 31.9 265 160 1648 137 62 23 
NT – C 36.0 127 46 636 45 73 18 
NT – D 65.4 2289 1778 5445 1274 161 55 
NT  – J 35.1 770 399 3143 268 148 59 
CT – C vs. CT – D  p= 0.26 0.03 0.01 0.12 0.01 0.07 0.45 
CT – C vs. CT – J p= 1.00 0.06 0.04 0.30 0.14 0.08 1.00 
CT – D vs. CT – J p= 1.00 0.68 1.00 1.00 1.00 0.58 1.00 
NT – C vs. NT – D p= 0.03 0.01 <0.01 0.01 <0.01 <0.01 <0.01 
NT – C vs. NT – J p= 1.00 0.03 0.02 0.02 0.02 0.01 <0.01 
NT – D vs. NT – J p= 0.01 0.10 0.05 0.26 0.02 0.97 1.00 

†TKP = total Kjeldahl phosphorus, DRP = dissolved reactive phosphorus, TN = total nitrogen, NH4
+ = ammonium, 

TS = total solids, VS = volatile solids. Tillage*Manure Timing treatments are: CT – C = chisel control, CT – D 
=chisel with December manure, CT – J = chisel with January manure, NT – C = no-tillage control, NT – D = no-
tillage with December manure, NT – J = no-tillage with January manure. 
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Figure 3. Treatment means (± standard error) of a) Total Kjeldahl phosphorus (TKP), b) dissolved reactive 
phosphorus (DRP), c) total nitrogen (TN), and d) runoff by tillage x manure timing treatments during the 2016–17 
monitoring season. Nutrients and runoff are shown within the pre-freezing, frozen-ground, and post-freezing 
periods, as well as the cumulative of the three periods (Total). [CT = fall tillage with a chisel plow, NT = no-tillage, 
Control = no manure, Dec = December manure timing, Jan = January manure timing]. 
 

Year-to-year weather introduced variability in the effectiveness of depressional storage, but 

surface roughness from tillage on the contour reduced overall runoff during both years. Tillage 

may be important during the freezing season when the risk of runoff is high in corn silage fields. 

These systems are particularly vulnerable because the bare soils - without residue or cover crops - 

are less able to slow the velocity of runoff (Starkloff et al., 2017) without surface roughness 

(Ramos et al., 2016). The surface hydraulic conductivity may also be lower in NT compared to 
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freshly tilled soils that have a lower bulk density (Lampurlanés and Cantero-Martínez, 2006; 

Ranaivoson et al., 2005). This difference may reduce the infiltration potential of NT during field-

saturated conditions that are common from fall rain and spring melt in pre- and post-freezing 

seasons, respectively. The importance of ponding meltwater and rainfall may be emphasized for 

frozen soils, which have a reduced infiltration potential from pore ice (Iwata et al., 2011; Starkloff 

et al., 2017) and explain the lower runoff losses from Young and Mutchler’s (1976) plowed fields.  

Nutrient Loads 

Differences in nutrient loads in runoff (g/ha) between CT and NT soils were a function of 

runoff hydrology and presence and condition of manure when runoff occurred. In 2015-16, the 

December manure application occurred on soil that was field-saturated, but not frozen or snow-

covered, and the January application was on top of snow overlying soil frozen from the surface to 

a 50 cm depth (Figure 1 a-c, Table 1). During this winter season, greater nutrient losses from NT 

soils were driven by greater runoff: as the runoff volume increased, the concentration of runoff 

nutrients also increased, as detailed by Vadas et al. (this issue). Subsequently, loads of TKP, DRP, 

TN, NH4+, TS, and VS were 44-276 times greater on NT than CT, which were all statistically 

significant as a main effect (Table 3). Most nutrient loss occurred during the frozen-ground and 

post-freezing periods with NT and solely the frozen-ground period with CT (Figure 2). 

During 2016–17, the December application was atop of snow overlying soil frozen from the 

surface to a 10 cm depth, and the January application was atop of snow overlying soil that was 

thawed at the surface and frozen at depths of 6–44 cm (Figure 1, Table 1). The nutrient (TKP, 

DRP, TN, NH4
+) and sediment (TS, VS) loads were only 1.5 – 3.4 times greater on NT than CT, 

in part because there was more runoff from CT soil this second winter than during the first winter, 

which led to greater concentrations, hence loads, of runoff nutrients. Only TKP was significantly 
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greater with NT as a main effect (Table 4), indicating nutrient losses in winter runoff are a function 

of hydrology that tillage may not fully control. It may also indicate that the increase in infiltration 

from fall tillage is greatest in the first year of tillage. At the same time, TN and TKP losses in NT 

controls, as well as the background nutrient levels of NT soils, were lower by the second year. 

Reducing some surface nutrient enrichment in NT may have also decreased differences between 

tillages. A need exists for longer-term studies that evaluate the effect of tillage on infiltration and 

soil fertility effects during the freezing season. 

Nutrient loads in runoff were also driven by the presence of manure and availability of nutrients 

for transport when the runoff occurred, which was based on the application timing within each 

tillage. In 2015–16, the greatest nutrient loads occurred during the frozen-ground period, when 

most runoff was produced and nutrients from the January manure application were lost (Figure 2). 

Cumulative loads of the dissolved nutrients were significantly greater for NT – J compared to NT 

– C or NT – D (Table 3). There were no significant differences between NT – C and NT – D, 

though most nutrients were elevated numerically following both manure application timings. 

Volatile S losses in runoff, indicative of manure, were elevated from both manure timings 

compared to the unmanured control (Table 3). Greater losses from the January manure application 

timing over the December timing may be partly due to greater nutrients applied in January (Table 

1), but are largely driven by the field conditions during manure application. 1.2 and 1.3 times as 

much TN and TP, respectively, were applied in January 2016 than in December 2015, but NT soils 

with the January application lost two times as much TN and TKP compared to NT soils with the 

December application (Table 3). This was due to manure application to unfrozen, snow-free soil 

in December 2015 and onto snow-covered soil with extensive frost development in January 2016. 

The liquid in the December-applied manure had a greater chance to infiltrate into the soil and be 
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removed from risk of runoff loss compared to that in January because of the greater infiltration 

potential and hydraulic conductivity of unfrozen soils (Azmatch et al., 2012), which likely caused 

the lower runoff ratios. Some January-applied manure also stayed suspended in the snowpack, 

which further increased the chance of loss in runoff by accelerating snowmelt (Stock et at., 2019) 

and the availability of nutrients for surface transport. For event-by-event dynamics related to 

surface transport, see Vadas et al. (this issue). Overall, the restrictions on manure liquid infiltration 

by the presence and extent of frozen soils, manure application onto snow, contributed to the greater 

nutrient loads from the January manure application in 2015–16. 

There were also significant differences between manure application timings within CT that 

followed trends from NT during 2015–16, though little runoff occurred from any of the CT 

treatments. All nutrient and sediment loads were significantly lower in CT – C and CT – D than 

CT – J, and CT – C and CT – D were not significantly different (Table 3). Nutrients had greater 

and sediment loads had lower numerical values in CT manure timings because the low runoff 

volumes likely had slow flow rates, thus an inability to carry significant sediment. Moreover, the 

only runoff event for CT was during the frozen ground period, when soil frost limited sediment 

losses (Vadas et al., this issue). Overall, the January manure timing resulted in the greatest loads 

on both tillages, but nutrient losses were 20-40 times lower when the manure was applied to CT 

soils. Nutrient concentrations in manure runoff are generally greatest during the first runoff events 

post application (Komiskey et al., 2011; Vadas et al., this issue). Therefore, manure nutrient loads 

in runoff were also likely reduced because the sole CT runoff event did not occur until 18-20 

February 2016, weeks after either manure application took place. This delayed runoff timing - 

combined with about ten times less runoff volume in CT than NT during the event - resulted in 

nutrient concentrations that were significantly lower in CT than NT. CT effectively reduced runoff 
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at key times and was especially important during the frozen-ground period when the potential for 

surface nutrient transport is greatest and can account for most annual runoff losses (Good et al., 

2012). The surface depressional storage thereby provided more time for nutrients in liquid manure, 

along with rain and snowmelt, to infiltrate. 

Manure timings within tillages also had a significant effect on nutrient loads during 2016–17, 

but patterns were nearly opposite from 2015–16. Within both NT and CT, December and January 

manure timings significantly increased nutrient and sediment loads compared to their unmanured 

controls, but the greatest loads occurred from the December timing (Table 4). Greater losses from 

the December manure application timing over the January timing may be partly due to greater 

nutrients applied in December (Table 1), but also the field conditions during and after manure 

application. 1.0 and 1.2 times more TN and TP, respectively, were applied in December 2016 than 

in January 2017, but soils with the December application up to two times more TN and TKP 

compared to those with the January application (regardless of tillage) (Table 4). Both manure 

applications this winter were atop of snow and frozen soils, which restricted manure liquid 

infiltration into soil. However, the presence of surface thaw during application in January 2017, as 

opposed to soil frozen from the surface downward in December 2016, likely allowed some manure 

liquid and nutrients to immediately infiltrate into the soil, reducing manure nutrient loss potential 

in subsequent runoff events. Moreover, December and January were wet months. Prior to the 

January manure application, the December manure interacted with 134 mm precipitation and four 

runoff events on frozen soil, creating additional opportunities for surface nutrient transport. During 

this time prior to the January application, the runoff ratios of CT peaked, leading to greater runoff 

nutrient concentrations and ultimately, nutrient loads.   
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Overall, the elevated loads from December and January manure timings, but especially during 

January 2016 and December 2016, was a function of the environmental conditions following 

application. Frozen soils increased the likelihood of runoff by lowering thresholds of available 

water (precipitation or snowmelt) needed to induce runoff (Vadas et al., 2017) by reducing 

infiltration. According to a laboratory investigation, the process of infiltration into a frozen soil 

follows three steps: 1) delayed or no initial infiltration, 2) slow infiltration as the wetting front 

advances through the soil frost layer, and 3) more rapid infiltration as the wetting front reaches the 

unfrozen soil beneath the frozen soil layer (Watanabe et al., 2011). During 2015–16, the presence 

of unfrozen soil in December versus substantial soil frost and snow in January (frost thickness = 

50.1 cm, SWE = 24 mm) resulted in significantly greater runoff and nutrient loss from the January 

application. During 2016–17, both manure timings encountered soil frost, which elevated runoff, 

nutrient, and sediment losses from manure. There was a thinner soil frost layer and less snow 

accumulation during the December 2016 application (frost thickness = 10 cm, SWE = 10 mm) 

than that in January 2017 (frost thickness = 38 cm, SWE = 31 mm). Losses were likely lower in 

January 2017 because the surface layer of soil was thawed, allowing some manure liquid to 

immediately infiltrate the soil, thereby reducing the runoff ratio. Moreover, the December manure 

interacted with more precipitation and runoff events on frozen soil, therefore had more opportunity 

for surface losses – higher runoff ratios – before the January manure was even applied. From field 

observation, as manure was applied, the liquids rapidly infiltrated snow, leaving coarser solids 

suspended on the snow surface. Some manure remained trapped throughout the snow profile after 

percolation, while the rest of the liquid accumulated in the snow at the soil surface. When surface 

thaw of soil frost was present (i.e. January 2017), some liquid infiltrated the soil. When the soil 

surface was frozen (i.e. January 2016 and December 2016), the manure liquid that accumulated in 
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the snow at the soil surface became an icy layer. Based on these processes, initial infiltration was 

delayed or did not occur for manure applications on soils with a frozen surface layer (i.e. January 

2016 and December 2016), which led to more nutrient losses during subsequent runoff events, 

particularly when greater precipitation fell on frozen soils.  

CONCLUSION 

Wintertime manure applications pose a significant challenge to on-farm nutrient retention 

because of the limited infiltration potential of frozen soils, presence of snow, and likelihood of 

runoff during snowmelt and rain-on-snow events. Corn silage systems lack residue, thus surface 

roughness from tillage is important in reducing runoff and nutrient transport. In this study, fall 

tillage reduced nutrient and sediment loads by reducing runoff volume, but was less effectiveness 

in the season with greater precipitation. Although fall tillage reduced winter runoff relative to no-

tillage, erosion may be greater during the growing season and these seasonal tradeoffs must be 

quantified for year-round management decisions. Liquid manure application to unfrozen soil 

significantly reduced losses and partially-thawed soil helped to a lesser degree. Application atop 

snow to runoff risk by increasing the availability of nutrients for transport and accelerating 

snowmelt. Overall, however, timing manure applications was a less predictable control because 

runoff hydrology was strongly driven by seasonal weather and that led to an inherently greater risk 

of nutrient losses during winter.  Additional research that investigates long-term field conditions, 

different soil textures, and infiltration rates on variably-saturated frozen soils would help establish 

physical processes that drive nutrient transport in winter. Tillage, frozen soil, snow cover, and 

weather should be considered with manure application during the freezing season to reduce the 

risk of nutrient loss to the environment. 
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FIGURES AND TABLES 

Figure 1. Average hourly air temperature and total daily precipitation as rainfall or the liquid equivalent of snowfall 
during a) 2015–16 and d) 2016–17; the snow-water equivalent (SWE) of snowpack during b) 2015–16 and e) 2016–
17; and the average frost depth during c) 2015–16 and f) 2016–17. Runoff event dates are designated in a, b, d, and e 
with pink, vertical lines; and manure application dates are denoted with an asterisks in b and e. 
 

Figure 2. Treatment means (± standard error) of a) Total Kjeldahl phosphorus (TKP), b) dissolved reactive 
phosphorus (DRP), c) total nitrogen (TN), and d) runoff by tillage x manure timing treatments during the 2015–16 
monitoring season. Nutrients and runoff are shown within the pre-freezing, frozen-ground, and post-freezing 
periods, as well as the cumulative of the three periods (Total). [CT = fall tillage with a chisel plow, NT = no-tillage, 
Control = no manure, Dec = December manure timing, Jan = January manure timing]. 

 

Figure 3. Treatment means (± standard error) of a) Total Kjeldahl phosphorus (TKP), b) dissolved reactive 
phosphorus (DRP), c) total nitrogen (TN), and d) runoff by tillage x manure timing treatments during the 2016–17 
monitoring season. Nutrients and runoff are shown within the pre-freezing, frozen-ground, and post-freezing 
periods, as well as the cumulative of the three periods (Total). [CT = fall tillage with a chisel plow, NT = no-tillage, 
Control = no manure, Dec = December manure timing, Jan = January manure timing]. 
 
 
Table 1. The dates and nutrient additions for each manure application with the corresponding field conditions during 
the application dates. 

Application 
Date 

Manure Analysis†   Field Conditions† 
TN TP TK TS VS  Frost Depth 

[cm] 
SWE 
[mm] ---- [kg ha-1] ---- --- [%] ---  

10 Dec. 2015 65.9  8.7 68.2 2.0 1.3  0.0 0 
26 Jan. 2016 80.6  11.3 56.3 2.9 2.0  0.0 – 50.1 24 
09 Dec. 2016 102.9  17.8 53.1 5.8 4.4  0.0 – 10.4 10 
27 Jan. 2017 99.2  14.4 57.5 5.5 4.1  6.2 – 43.9 31 

†TN = total nitrogen, TP = total phosphorus, TK = total potassium, TS = total solids, and VS = volatile solids from 
manure on each of the four application dates. SWE = snow-water equivalent. 
 
 

Table 2. Pre-freezing, frozen-ground, and post-freezing periods during the 2015–16 and 2016–17 monitoring 
seasons according to soil frost dates. Precipitation for each period is given as rainfall and snowfall, with snowfall 
expressed in liquid equivalents (SWE). Corresponding runoff events are given for soils with no-tillage (NT) and fall 
tillage with a chisel plow (CT). 

Year Period 
# Days 
Frozen 

Precipitation 
-- [mm] -- 

# Runoff  
Events  

Rain SWE NT CT 

2015–
2016 

Pre-freezing 24 Nov – 29 Dec    74 132 7 2 0 
Frozen-ground 30 Dec – 11 Mar 24 24 5 1 
Post-freezing 12 Mar – 30 Apr 105 17 2 0 

2016–
2017 

Pre-freezing 24 Nov – 06 Dec   94† 75 12 1 0 
Frozen-ground 07 Dec – 22 Feb, 03 – 20 Mar 102 87 8 6 
Post-freezing 23 Feb – 02 Mar, 21 Mar – 30 Apr 163 7 1 0 

†The frozen-ground and post-freezing periods of 2016–17 are discontinuous because the soil thawed between 23 
Feb. and 02 Mar. 2017, and refroze by 03 Mar. 2017.  
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Table 3. Treatment means and p-values for comparisons of tillage, manure timing, and tillage x manure timing 
effects on total loads in the 2015–16 monitoring season†.  

Effect 
Runoff TKP DRP TN NH4+ TS VS 
[mm] ------------- [g ha-1] ------------ -- [kg ha-1] -- 

Ti
lla

ge
 Tillage with chisel (CT) 1.3 7.2 3.8 56.7 11.9 2.7 1.1 

No-Tillage (NT) 38.8 1432 209 5943 525 746 126 
CT vs. NT       p= 0.01 <0.01 <0.01 0.01 0.01 <0.01 0.01 

M
an

ur
e 

Ti
m

in
g 

Control (C) 5.5 55.2 8.8 336 38.3 33.8 9.0 
December (D) 4.2 42.5 9.3 291 27.2 26.2 6.5 
January (J) 15.7 443 269 2005 476 99.8 29.5 
C vs. D  p= 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
C vs. J p= 0.11 0.01 <0.01 0.02 0.01 0.11 0.12 
D vs. J p= 0.03 <0.01 <0.01 0.01 <0.01 0.03 0.03 

Ti
lla

ge
* 

M
an

ur
e 

Ti
m

in
g 

CT – C 0.9 3.5 1.1 33 5.3 1.6 0.9 
CT – D 0.4 1.5 0.8 17 3.1 0.9 0.4 
CT – J 5.7 70 61 326 104 13 5.0 
NT – C 33.0 881 68 3379 275 720 94 
NT – D 40.6 1197 113 5045 241 769 122 
NT  – J 43.5 2784 1192 12313 2191 750 174 
CT – C vs. CT – D  p= 0.60 0.34 1.00 0.66 1.00 0.93 0.56 
CT – C vs. CT – J p= 0.06 0.01 <0.01 0.03 0.01 0.04 0.10 
CT – D vs. CT – J p= 0.05 0.01 0.02 0.03 0.05 0.01 0.03 
NT – C vs. NT – D p= 1.00 1.00 0.94 1.00 1.00 1.00 1.00 
NT – C vs. NT – J p= 1.00 0.15 0.01 0.16 0.05 1.00 1.00 
NT – D vs. NT – J p= 1.00 0.21 0.01 0.26 0.02 1.00 1.00 

†TKP = total Kjeldahl phosphorus, DRP = dissolved reactive phosphorus, TN = total nitrogen, NH4
+ = ammonium, 

TS = total solids, VS = volatile solids. Tillage*Manure Timing treatments are: CT – C = chisel control, CT – D 
=chisel with December manure, CT – J = chisel with January manure, NT – C = no-tillage control, NT – D = no-
tillage with December manure, NT – J = no-tillage with January manure. 
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Table 4. Treatment means and p-values for comparisons of tillage, manure timing, and tillage*manure timing 
effects on total loads in the 2016–17 monitoring season†.  

Effect 
Runoff TKP DRP TN NH4+ TS VS 
[mm] ------------- [g ha-1] ------------ -- [kg ha-1] -- 

Ti
lla

ge
 Tillage with chisel (CT) 30.9 181 105 1464 146 56 23 

No-Tillage (NT) 43.5 608 319 2216 248 120 39 
CT vs. NT       p= 0.19 0.05 0.07 0.32 0.31 0.07 0.21 

M
an

ur
e 

Ti
m

in
g 

Control (C) 35.5 88 34 755 46 57 19 
December (D) 41.5 919 719 3400 778 101 38 
January (J) 33.4 452 253 2276 192 96 37 
C vs. D  p= 0.49 <0.01 <0.01 0.01 <0.01 <0.01 0.01 
C vs. J p= 1.00 0.01 0.01 0.02 0.02 <0.01 0.01 
D vs. J p= 0.14 0.12 0.05 0.24 0.01 1.00 1.00 

Ti
lla

ge
* 

M
an

ur
e 

Ti
m

in
g 

CT – C 35.1 61 25 896 48 45 21 
CT – D 26.3 369 291 2122 475 63 26 
CT – J 31.9 265 160 1648 137 62 23 
NT – C 36.0 127 46 636 45 73 18 
NT – D 65.4 2289 1778 5445 1274 161 55 
NT  – J 35.1 770 399 3143 268 148 59 
CT – C vs. CT – D  p= 0.26 0.03 0.01 0.12 0.01 0.07 0.45 
CT – C vs. CT – J p= 1.00 0.06 0.04 0.30 0.14 0.08 1.00 
CT – D vs. CT – J p= 1.00 0.68 1.00 1.00 1.00 0.58 1.00 
NT – C vs. NT – D p= 0.03 0.01 <0.01 0.01 <0.01 <0.01 <0.01 
NT – C vs. NT – J p= 1.00 0.03 0.02 0.02 0.02 0.01 <0.01 
NT – D vs. NT – J p= 0.01 0.10 0.05 0.26 0.02 0.97 1.00 

†TKP = total Kjeldahl phosphorus, DRP = dissolved reactive phosphorus, TN = total nitrogen, NH4
+ = ammonium, 

TS = total solids, VS = volatile solids. Tillage*Manure Timing treatments are: CT – C = chisel control, CT – D 
=chisel with December manure, CT – J = chisel with January manure, NT – C = no-tillage control, NT – D = no-
tillage with December manure, NT – J = no-tillage with January manure. 
 



 
Supplemental Figure. Diagram of the experimental design at the field site located in south-central Wisconsin, at the University of Wisconsin Agricultural 
Research Station - Arlington. The plots were arranged in pairs according to tillage. Five of the pairs were assigned to no-tillage (NT) and five pairs were assigned 
to tillage (CT), arranged in a completely randomized design. Two of the three manure application treatments were assigned within each pair, completely at 
random, but balanced between the NT and CT treatments. Manure application treatments are color-coded as the unmanured control in blue, December 
application in red, January application in black, and blank plots in green. The location of the on-site weather station is shown by the black circle.  
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Supplemental Table. Air temperature expressed as monthly averages (Ave), minimums (Min), and maximums (Max); total monthly precipitation; and soil frost 
dates during 2015–2016 and 2016–2017, compared to historic weather trends. 

Year Month Air Temperature [°C] Precipitation [mm] Soil frost dates 
  Ave Min Max  Freeze Thaw Days frozen 
2015–16 November 5.4 -12.8 22.0 129 30 Dec 12 Mar 74 

December 1.0 -12.0 14.7 82    
January -7.1 -24.0 4.1 25    
February -3.5 -21.1 13.3 13    
March 4.1 -15.2 20.0 103    
April 7.3 -9.4 26.2 27    

2016–17 November 6.4 -7.3 21.9 45 7 Dec 23 Feb 94 
December -5.8 -25.2 5.1 65 3 Mar 21 Mar  
January -5.3 -21.6 5.8 83    
February -0.3 -16.2 19.8 64    
March 0.4 -16.3 16.3 52    

 April 9.8 -0.5 23.6 109    
Historic  
Weathera 

November 0.9 -4.6 6.4 61 19 Nov (2) 22 Mar (4) 118 (6) 
December -6.4 -11.7 -1.3 37    
January -9.0 -14.6 -3.4 29    
February -6.5 -12.1 -0.9 33    
March -0.3 -6.4 5.7 48    

 April 7.1 0.1 14.0 89    
Note. Total monthly precipitation (rainfall + snowfall) expressed in liquid equivalents.  
aMonthly air temperature and precipitation based on 1981–2010 normals, recorded 16 km south of the field site at the Dane County Regional Airport in Madison, 
WI (NOAA, 2017). Average soil frost dates (± one standard deviation) based on 10-year averages (2005–2014), recorded 13 km west of the field site in Lodi, WI 
(University of Wisconsin, 2010). 
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