77 research outputs found

    Magnon gap excitations and spin-entangled optical transition in van der Waals antiferromagnet NiPS3

    Full text link
    Optical magneto-spectroscopy methods (Raman scattering, far-infrared transmission, and photoluminescence) have been applied to investigate the properties of the NiPS3 semiconducting antiferromagnet. The fundamental magnon gap excitation in this van der Waals material has been found to be split into two components, in support of the biaxial character of the NiPS3 antiferromagnet. Photoluminescence measurements in the near-infrared spectral range show that the intriguing 1.475 eV-excitation unique to the NiPS3 antiferromagnetic phase splits upon the application of the in-plane magnetic field. The observed splitting patterns are correlated with properties of magnon excitations and reproduced with the simple model proposed. Possible routes toward a firm identification of the spin-entangled 1.475 eV-optical excitation in NiPS3, which can hardly be recognized as a coherent Zhang-Rice exciton, are discussed.Comment: 8 pages, 8 figure

    Singlet and triplet trions in WS2_2 monolayer encapsulated in hexagonal boron nitride

    Full text link
    Embedding a WS2_2 monolayer in flakes of hexagonal boron nitride allowed us to resolve and study the photoluminescence response due to both singlet and triplet states of negatively charged excitons (trions) in this atomically thin semiconductor. The energy separation between the singlet and triplet states has been found to be relatively small reflecting rather weak effects of the electron-electron exchange interaction for the trion triplet in a WS2_2 monolayer, which involves two electrons with the same spin but from different valleys. Polarization-resolved experiments demonstrate that the helicity of the excitation light is better preserved in the emission spectrum of the triplet trion than in that of the singlet trion. Finally, the singlet (intravalley) trions are found to be observable even at ambient conditions whereas the emission due to the triplet (intervalley) trions is only efficient at low temperatures.Comment: 11 pages, 4 figure

    Magnetoelastic interaction in the two-dimensional magnetic material MnPS3_3 studied by first principles calculations and Raman experiments

    Full text link
    We report experimental and theoretical studies on the magnetoelastic interactions in MnPS3_3. Raman scattering response measured as a function of temperature shows a blue shift of the Raman active modes at 120.2 and 155.1 cm1^{-1}, when the temperature is raised across the antiferromagnetic-paramagnetic transition. Density functional theory (DFT) calculations have been performed to estimate the effective exchange interactions and calculate the Raman active phonon modes. The calculations lead to the conclusion that the peculiar behavior with temperature of the two low energy phonon modes can be explained by the symmetry of their corresponding normal coordinates which involve the virtual modification of the super-exchange angles associated with the leading antiferromagnetic (AFM) interactions.Comment: Main: 9 pages, 7 figures. Supplementary : 5 pages, 4 figure

    Valley polarization of singlet and triplet trions in WS2_2 monolayer in magnetic fields

    Full text link
    The spectral signatures associated with different negatively charged exciton complexes (trions) in a WS2_2 monolayer encapsulated in hBN, are analyzed from low temperature and polarization resolved reflectance contrast (RC) and photoluminescence (PL) experiments, with an applied magnetic field. Based on results obtained from the RC experiment, we show that the valley Zeeman effect affects the optical response of both the singlet and the triplet trion species through the evolution of their energy and of their relative intensity, when applying an external magnetic field. Our analysis allows us to estimate a free electron concentration of 1.31011\sim 1.3 \cdot 10^{11} cm2^{-2}. The observed evolutions based on PL experiments on the same sample are different and can hardly be understood within the same simple frame highlighting the complexity of relaxation processes involved in the PL response.Comment: 7 pages, 4 figures; source file correcte

    Magnon gap excitations in van der Waals antiferromagnet MnPSe3_3

    Full text link
    Magneto-spectroscopy methods have been employed to study the zero-wavevector magnon excitations in MnPSe3_3. Experiments carried out as a function of temperature and the applied magnetic field show that two low-energy magnon branches of MnPSe3_3 in its antiferromagnetic phase are gapped. The observation of two low-energy magnon gaps (at 14 and 0.7 cm1^{-1}) implies that MnPSe3_3 is a biaxial antiferromagnet. A relatively strong out-of-plane anisotropy imposes the spin alignment to be in-plane whereas the spin directionality within the plane is governed by a factor of 2.5 ×\times 103^{-3} weaker in-plane anisotropy.Comment: 9 pages, 3 figure

    Flipping exciton angular momentum with chiral phonons in MoSe2_2/WSe2_2 heterobilayers

    Full text link
    Identifying quantum numbers to label elementary excitations is essential for the correct description of light-matter interaction in solids. In monolayer semiconducting transition metal dichalcogenides (TMDs) such as MoSe2_2 or WSe2_2, most optoelectronic phenomena are described well by labelling electron and hole states with the spin projection along the normal to the layer (Sz_z). In contrast, for WSe2_2/MoSe2_2 interfaces recent experiments show that taking Sz_z as quantum number is not a good approximation, and spin mixing needs to be always considered. Here we argue that the correct quantum number for these systems is not Sz_z, but the zz-component of the total angular momentum -- Jz_z = Lz_z + Sz_z -- associated to the C3_3 rotational lattice symmetry, which assumes half-integer values corresponding modulo 3 to distinct states. We validate this conclusion experimentally through the observation of strong intervalley scattering mediated by chiral optical phonons that -- despite carrying angular momentum 1 -- cause resonant intervalley transitions of excitons, with an angular momentum difference of 2.Comment: are welcom

    Excitons and trions in WSSe monolayers

    Full text link
    The possibility of almost linear tuning of the band gap and of the electrical and optical properties in monolayers (MLs) of semiconducting transition metal dichalcogenide (S-TMD) alloys opens up the way to fabricate materials with on-demand characteristics. By making use of photoluminescence spectroscopy, we investigate optical properties of WSSe MLs with a S/Se ratio of 57/43 deposited on SiO2_2/Si substrate and encapsulated in hexagonal BN flakes. Similarly to the "parent""parent" WS2_2 and WSe2_2 MLs, we assign the WSSe MLs to the ML family with the dark ground exciton state. We find that, in addition to the neutral bright A exciton line, three observed emission lines are associated with negatively charged excitons. The application of in-plane and out-of-plane magnetic fields allows us to assign undeniably the bright and dark (spin- and momentum-forbidden) negative trions as well as the phonon replica of the dark spin-forbidden complex. Furthermore, the existence of the single photon emitters in the WSSe ML is also demonstrated, thus prompting the opportunity to enlarge the wavelength range for potential future quantum applications of S-TMDs.Comment: 6 pages, 5 figures, +ES

    Ponesimod Compared with Teriflunomide in Patients with Relapsing Multiple Sclerosis in the Active-Comparator Phase 3 OPTIMUM Study : A Randomized Clinical Trial

    Get PDF
    Importance: To our knowledge, the Oral Ponesimod Versus Teriflunomide In Relapsing Multiple Sclerosis (OPTIMUM) trial is the first phase 3 study comparing 2 oral disease-modifying therapies for relapsing multiple sclerosis (RMS). Objective: To compare the efficacy of ponesimod, a selective sphingosine-1-phosphate receptor 1 (S1P) modulator with teriflunomide, a pyrimidine synthesis inhibitor, approved for the treatment of patients with RMS. Design, Setting, and Participants: This multicenter, double-blind, active-comparator, superiority randomized clinical trial enrolled patients from April 27, 2015, to May 16, 2019, who were aged 18 to 55 years and had been diagnosed with multiple sclerosis per 2010 McDonald criteria, with a relapsing course from the onset, Expanded Disability Status Scale (EDSS) scores of 0 to 5.5, and recent clinical or magnetic resonance imaging disease activity. Interventions: Patients were randomized (1:1) to 20 mg of ponesimod or 14 mg of teriflunomide once daily and the placebo for 108 weeks, with a 14-day gradual up-titration of ponesimod starting at 2 mg to mitigate first-dose cardiac effects of S1Pmodulators and a follow-up period of 30 days. Main Outcomes and Measures: The primary end point was the annualized relapse rate. The secondary end points were the changes in symptom domain of Fatigue Symptom and Impact Questionnaire-Relapsing Multiple Sclerosis (FSIQ-RMS) at week 108, the number of combined unique active lesions per year on magnetic resonance imaging, and time to 12-week and 24-week confirmed disability accumulation. Safety and tolerability were assessed. Exploratory end points included the percentage change in brain volume and no evidence of disease activity (NEDA-3 and NEDA-4) status. Results: For 1133 patients (567 receiving ponesimod and 566 receiving teriflunomide; median [range], 37.0 [18-55] years; 735 women [64.9%]), the relative rate reduction for ponesimod vs teriflunomide in the annualized relapse rate was 30.5% (0.202 vs 0.290; P <.001); the mean difference in FSIQ-RMS, -3.57 (-0.01 vs 3.56; P <.001); the relative risk reduction in combined unique active lesions per year, 56% (1.405 vs 3.164; P <.001); and the reduction in time to 12-week and 24-week confirmed disability accumulation risk estimates, 17% (10.1% vs 12.4%; P =.29) and 16% (8.1% vs 9.9; P =.37), respectively. Brain volume loss at week 108 was lower by 0.34% (-0.91% vs -1.25%; P <.001); the odds ratio for NEDA-3 achievement was 1.70 (25.0% vs 16.4%; P <.001). Incidence of treatment-emergent adverse events (502 of 565 [88.8%] vs 499 of 566 [88.2%]) and serious treatment-emergent adverse events (49 [8.7%] vs 46 [8.1%]) was similar for both groups. Treatment discontinuations because of adverse events was more common in the ponesimod group (49 of 565 [8.7%] vs 34 of 566 [6.0%]). Conclusions and Relevance: In this study, ponesimod was superior to teriflunomide on annualized relapse rate reduction, fatigue, magnetic resonance imaging activity, brain volume loss, and no evidence of disease activity status, but not confirmed disability accumulation. The safety profile was in line with the previous safety observations with ponesimod and the known profile of other S1P receptor modulators
    corecore