8 research outputs found

    High-throughput continuous-flow system for SABRE hyperpolarization

    Get PDF
    Signal Amplification By Reversible Exchange (SABRE) is a versatile method for hyperpolarizing small organic molecules that helps to overcome the inherent low signal-to-noise ratio of nuclear magnetic resonance (NMR) measurements. It offers orders of magnitude enhanced signal strength, but the obtained nuclear polarization usually rapidly relaxes, requiring a quick transport of the sample to the spectrometer. Here we report a new design of a polarizing system, which can be used to prepare a continuous flow of SABRE-hyperpolarized sample with a considerable throughput of several millilitres per second and a rapid delivery into an NMR instrument. The polarizer performance under different conditions such as flow rate of the hydrogen or liquid sample is tested by measuring a series of NMR spectra and magnetic resonance images (MRI) of hyperpolarized pyridine in methanol. Results show a capability to continuously produce sample with dramatically enhanced signal over two orders of magnitude. The constant supply of hyperpolarized sample can be exploited, e.g., in experiments requiring multiple repetitions, such as 2D- and 3D-NMR or MRI measurements, and also naturally allows measurements of flow maps, including systems with high flow rates, for which the level of achievable thermal polarization might not be usable any more. In addition, the experiments can be viably carried out in a non-deuterated solvent, due to the effective suppression of the thermal polarization by the fast sample flow. The presented system opens the possibilities for SABRE experiments requiring a long-term, stable and high level of nuclear polarization

    Effect of natural weathering on water absorption and pore size distribution in thermally modified wood determined by nuclear magnetic resonance

    Get PDF
    Funder: Teollisuusneuvos Heikki VÀÀnÀnen's FundFunder: International Thermowood AssociationFunder: Quantum Institute, University of OuluAbstractThermally modified wood (TMW) is widely used in outdoor applications due to its advanced properties towards weathering stresses. Although the structure changes of TMW from weather factors have been reported, investigation of the quantitative analysis of water states and cell wall structure of TMW after weathering is limited. In this work, the amount of bound water, fiber saturation point (FSP), cell wall pores, and free water distribution of thermally modified Scots pine, Norway spruce, and European ash were measured before and after a 2-year natural weathering via NMR relaxometry, cryoporometry, and magnetic resonance imaging. The results show that weathering increased T2 relaxation time of lumens, indicating the degradation of tracheids and vessels, especially in TMW compared to unmodified wood. The amounts of bound water, FSP value, and cell wall pores were increased after weathering; however, an increase in thermal modification intensity resulted in lower FSP and limited the increase in number of pores. In summary, TMW showed better performance than unmodified wood after weathering.</jats:p

    Strongly hyperpolarized gas from parahydrogen by rational design of ligand-capped nanoparticles

    Get PDF
    The production of hyperpolarized fluids in continuous mode would broaden substantially the range of applications in chemistry, materials science, and biomedicine. Here we show that the rational design of a heterogeneous catalyst based on a judicious choice of metal type, nanoparticle size and surface decoration with appropriate ligands leads to highly efficient pairwise addition of dihydrogen across an unsaturated bond. This is demonstrated in a parahydrogen-induced polarization (PHIP) experiment by a 508-fold enhancement (±78) of a CH3 proton signal and a corresponding 1219-fold enhancement (±187) of a CH2 proton signal using nuclear magnetic resonance (1H-NMR). In contrast, bulk metal catalyst does not show this effect due to randomization of reacting dihydrogen. Our approach results in the largest gas-phase NMR signal enhancement by PHIP known to date. Sensitivity-enhanced NMR with this technique could be used to image microfluidic reactions in-situ, to probe nonequilibrium thermodynamics or for the study of metabolic reactions

    Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    Get PDF
    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR
    corecore