15 research outputs found

    One-year clinical outcome of patients with nonvalvular atrial fibrillation: Insights from KERALA-AF registry.

    Get PDF
    BackgroundWe report patient characteristics, treatment pattern and one-year clinical outcome of nonvalvular atrial fibrillation (NVAF) from Kerala, India. This cohort forms part of Kerala Atrial Fibrillation (KERALA-AF) registry which is an ongoing large prospective study.MethodsKERALA-AF registry collected data of adults with previously or newly diagnosed atrial fibrillation (AF) during April 2016 to April 2017. A total of 3421 patients were recruited from 53 hospitals across Kerala state. We analysed one-year follow-up outcome of 2507 patients with NVAF.ResultsMean age at recruitment was 67.2 years (range 18-98) and 54.8% were males. Main co-morbidities were hypertension (61.2%), hyperlipidaemia (46.2%) and diabetes mellitus (37.2%). Major co-existing diseases were chronic kidney disease (42.1%), coronary artery disease (41.6%), and chronic heart failure (26.4%). Mean CHA2DS2-VASc score was 3.18 (SD ± 1.7) and HAS-BLED score, 1.84 (SD ± 1.3). At baseline, use of oral anticoagulants (OAC) was 38.6% and antiplatelets 32.7%. On one-month follow-up use of OAC increased to 65.8% and antiplatelets to 48.3%. One-year all-cause mortality was 16.48 and hospitalization 20.65 per 100 person years. The main causes of death were cardiovascular (75.0%), stroke (13.1%) and others (11.9%). The major causes of hospitalizations were acute coronary syndrome (35.0%), followed by arrhythmia (29.5%) and heart failure (8.4%).ConclusionsDespite high risk profile of patients in this registry, use of OAC was suboptimal, whereas antiplatelets were used in nearly half of patients. A relatively high rate of annual mortality and hospitalization was observed in patients with NVAF in Kerala AF Registry

    Basic principles of ultrafast Raman loss spectroscopy

    No full text
    When a light beam passes through any medium, the effects of interaction of light with the material depend on the field intensity. At low light intensities the response of materials remain linear to the amplitude of the applied electromagnetic field. But for sufficiently high intensities, the optical properties of materials are no longer linear to the amplitude of applied electromagnetic field. In such cases, the interaction of light waves with matter can result in the generation of new frequencies due to nonlinear processes such as higher harmonic generation and mixing of incident fields. One such nonlinear process, namely, the third order nonlinear spectroscopy has become a popular tool to study molecular structure. Thus, the spectroscopy based on the third order optical nonlinearity called stimulated Raman spectroscopy (SRS) is a tool to extract the structural and dynamical information about a molecular system. Ultrafast Raman loss spectroscopy (URLS) is analogous to SRS but is more sensitive than SRS. In this paper, we present the theoretical basis of SRS (URLS) techniques which have been developed in our laboratory

    Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation

    Get PDF
    Abstract Background Biomass pretreatment using certain ionic liquids (ILs) is very efficient, generally producing a substrate that is amenable to saccharification with fermentable sugar yields approaching theoretical limits. Although promising, several challenges must be addressed before an IL pretreatment technology can become commercially viable. One of the most significant challenges is the affordable and scalable recovery and recycle of the IL itself. Pervaporation (PV) is a highly selective and scalable membrane separation process for quantitatively recovering volatile solutes or solvents directly from non-volatile solvents that could prove more versatile for IL dehydration. Results We evaluated a commercially available PV system for IL dehydration and recycling as part of an integrated IL pretreatment process using 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) that has been proven to be very effective as a biomass pretreatment solvent. Separation factors as high as 1500 were observed. We demonstrate that >99.9 wt% [C2C1Im][OAc] can be recovered from aqueous solution (≤20 wt% IL) and recycled five times. A preliminary technoeconomic analysis validated the promising role of PV in improving overall biorefinery process economics, especially in the case where other IL recovery technologies might lead to significant losses. Conclusions These findings establish the foundation for further development of PV as an effective method of recovering and recycling ILs using a commercially viable process technology
    corecore