Res Chem Intermed (2014) 40:2811–2822 DOI 10.1007/s11164-013-1130-3

Oxidation of benzoins to benzils in the presence of porphyrin sensitizers by air and sunlight or visible light

Maryam Ciyabi Hashjin · Roghayeh Ciyabi · Maryam Baharloui · Nava Taherizadeh · Ghaffar Hosseini

Received: 24 December 2012/Accepted: 1 March 2013/Published online: 17 March 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract In this work, two new aerobic routes are introduced for the oxidation of a variety of benzoins to benzils by using molecular oxygen in the presence of porphyrins as sensitizers, using white light or sunlight in acetonitrile under mild conditions. The methods have a wide range of applications, do not involve cumbersome work-up, exhibit chemoselectivity and proceed under mild reaction conditions. The resulting products are obtained in good yields in a reasonable time.

Keywords Photooxidation · Benzoin · Benzil · Visible light · Sunlight

Introduction

Among the important structures that are found in many bioactive compounds [1, 2], and applications in organic synthesis are 1,2-diketones [3]. 1,2-Diketones are utilized as intermediates in the synthesis of chiral ligands, pharmaceuticals, and biologically active compounds [4–6], photoinitiators [7–10], precursors of porphyrins [11–13], preparation of variety of heterocycles [14–21], and natural products [22, 23]. 1,2-Diketones are found in selective inhibitors of carboxylesterases, acid corrosion of mild steel inhibitors, and in photocurable coatings as photosensitive agents [24–26].

Because of the above-mentioned properties of 1,2-diketones, various synthetic methods have been reported by different research groups, such as direct oxidation of a-hydroxyketones by using nitric acid [27], ammonium nitrate-copper(II) acetate [28], thallium(III) nitrate [29], iodoxybenzene [30], oxone-alumina [31], bis-muth(III) nitrate-copper(II) acetate [32], iron(III) nitrate [33], tert-butyl

hydroperoxide-titanium(IV) chloride [34], sodium hydride [35], and porphyrin [36]. 1,2-Diketones have been synthesized with different reagents, such as oxidation of 1,2-diols [37, 38], oxidation of alkynes [39–49], oxidation of alkenes [50], oxidation of a-methylene ketones [51], rearrangement of a,b-epoxyketones [52–54], oxidation of vicinal dihaloalkenes [55], oxidation of epoxides [56], oxidation of 1,3-diols [57], and oxidation with molecular oxygen. They have been catalyzed by trichlorooxyvanadium [58], nickel-aluminum hydrotalcite [59], and chiral cobalt complex [60], while palladium-catalyzed oxidation of benzoins to benzils was achieved by using CsOH or K_2CO_3 as a base [61–63]. Porphyrins and metalloporphyrin complexes have been used in numerous biological systems [64]. Various synthetic metalloporphyrins have been studied such as the cytochrome P-450 model and as the catalyst for oxidation of alcohols, hydrocarbons and epoxidation of alkenes using molecular oxygen and various oxygen transfer reagents [65-69]. Iron porphyrins are well known, and many studies have been devoted to elucidating and using catalysts for alkane hydroxylation, oxidation of alkanes to alcohols or ketones, and oxidation of hydrocarbons [70-73]. Stochiometric amounts of a strong oxidant are needed for the generation of metalloporphyrins [74]. The photosensitized production of singlet oxygen has significance in the photooxidation of organic compounds, DNA damage, and photodynamic therapy [75–77], such that a variety of these photosensitizers have been developed and extensively studied [78-83].

Experimental

General procedure for the synthesis of porphyrins

 H_2TPP (Tetraphenylpor phyrin), H_2TMP (Tetramesitylepor phyrin), H_2TPFPP (Tetra(pentafluorophenyl) porphyrin), ClFeTMP, ClFeTPP, ClFeTPFPP and ZnTMP were synthesized and purified using Lindsey's Method and metallated according to Adler [84–86]. Metallated and non-metalled sensitizers were characterized by UV–Vis and ¹H NMR spectra.

General procedure for the synthesis of benzoins

To a solution of adehydes (15 mmol) in EtOH (8 mL) was added a solution of NaCN (6.3 mmol) in H₂O (1.5 mL). After stirring at reflux (80 °C) for 2 h, the reaction mixture was cooled to room temperature, concentrated in vacuo, and extracted with CH_2Cl_2 and saturated aqueous NaHCO₃. The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography to give benzoin substrates [87–89].

General procedure for the synthesis of benzils

The benzoins (1.0 mmol) and a 1 ml CH_2Cl_2 solution of the porphyrins (1.0 × 10⁻³ mmol) were dissolved in 14 mL of CH_3CN in a quartz tube. Air was bubbled through the solution and the samples were irradiated using visible light

Spectral data

Benzil

Yellow solid, Mp: 95–96 °C. ¹H NMR (300 MHz, CDCl₃): δ : 7.50 (t, J = 8.0 Hz, 4H); 7.69 (t, J = 7.2 Hz, 2H); 7.90–8.00 (4H, m). ¹³C NMR (75 MHz, CDCl₃): δ : 129.0; 130.0; 133.1; 135.0; 194.7. Anal. Calcd. for C₁₄H₁₀O₂: C, 79.98; H, 4.79; found C, 79.95; H, 4.69.

1,2-Dip-tolylethane-1,2-dione

Yellow solid. Mp: 103–104 °C ¹H NMR (300 MHz, CDCl₃): δ : 2.33 (6H, s); 7.20 (4H, d, J = 8.1 Hz); 7.77 (4H, d, J = 8.1 Hz). ¹³C NMR (75 MHz, CDCl₃): δ : 22.1; 129.8; 130.2; 130.8; 146.0; 194.6. Anal. Calcd. for C₁₆H₁₄O₂: C, 80.65; H, 5.92; found C, 80.65; H, 5.92.

1,2-Bis(3-Methoxyphenyl)ethane-1,2-dione

Yellow solid, Mp: 82 °C. ¹H NMR (300 MHz, CDCl₃): δ : 3.80 (6H, s); 7.10–7.20 (2H, m); 7.40 (2H, t, J = 8.0 Hz); 7.45–7.50 (2H, m); 7.50–7.50 (2H, m). ¹³C NMR (75 MHz, CDCl₃): δ : 55.4; 113.8; 122.1; 123.3; 130.0; 134.5; 160.4; 194.0. Anal. Calcd. for C₁₆H₁₄O₄: C, 71.10; H, 5.22; found C, 71.08; H, 5.12.

1,2-Bis(4-Chlorophenyl)ethane-1,2-dione

Yellow solid, Mp: 195–196 °C. ¹H NMR (300 MHz, CDCl₃): δ : 7.50 (4H, d, J = 8.6); 7.92 (4H, d, J = 8.6). ¹³C NMR (75 MHz, CDCl₃): δ : 129.7; 131.3; 131.4; 142.0, 192.5. Anal. Calcd. for C₁₄H₈Cl₂O₂: C, 60.24; H, 2.89; found C, 60.20; H, 2.85.

1,2-Bis(4-Bromophenyl)ethane-1,2-dione

Yellow solid, Mp: 224–226 °C. ¹H NMR (300 MHz, CDCl₃): δ : 7.65 (4H, d, J = 8.0 Hz); 7.80 (4H, d, J = 8.0 Hz). ¹³C NMR (75 MHz, CDCl₃): δ : 130.9; 131.4; 131.7; 132.7; 192.7. Anal. Calcd. for C₁₄H₈Br₂O₂: C, 45.69; H, 2.19; found C, 45.60; H, 2.09.

1,2-Di(Naphthalen-2-yl)ethane-1,2-dione

Yellow solid, Mp: 156–158 °C. ¹H NMR (300 MHz, CDCl₃): δ: 7.50–7.58 (2H, m); 7.63 (2H, m); 7.86–7.97 (6H, m); 8.17 (2H, m); 8.49 (2H, s). ¹³C NMR (75 MHz,

Scheme 1 Oxidation of benzoins to benzils

CDCl₃): δ : 123.5; 127.3; 128.0; 129.2; 129.7; 130.1; 130.5; 132.4; 133.7; 136.4; 194.7. Anal. Calcd. for C₂₂H₁₄O₂: C, 85.14; H, 4.55; found C, 85.04; H, 4.45.

Results and discussion

Many investigations for the preparation of benzils such as the reaction of oxalyl chloride with organostannanes, oxidation of alkynes, aldehyde condensation, and oxidation of alcohols have been documented. In view of significant drawbacks, such as the use of toxic and expensive reagents, high temperature, stoichiometric amounts of reagents, and low yield of these methods [90–94], a more efficient catalytic system is in high demand.

In continuation, here we would like to report a highly efficient catalytic system for the aerobic oxidation of benzoin derivatives using porphyrins as catalyst, which can be smoothly oxidized to corresponding benzils. Photooxygenation was performed in solutions of acetonitrile under visible light or sunlight in the presence of porphyrins under 1 atm pressure of air at room temperature (Scheme 1).

The catalytic activity of different metalloporphyrins and structurally different free base porphyrins for the oxidation of benzoins to benzils compounds by molecular oxygen were investigated by using 2-hydroxy-1,2-diphenylethanone as a model substrate. The engaged metals for the oxidation reactions were Fe, Mn, and Zn, and (H₂TPP), (H₂TMP), and (H₂TPFPP) were employed to cover different electronic properties. The results are summarized in Table 1. The oxidation of 2-hydroxy-1,2diphenylethanone catalyzed by these catalysts produced benzil as the product. The catalytic activity of metalloporphyrins for oxidation appears to be dependent on the nature of the central ions. CIFeTMP porphyrin showed the best activity among the three simple structure metalloporphyrin catalysts, and presented an excellent catalytic performance for the oxidation of 2-hydroxy-1,2-diphenylethanone in mild conditions. The catalytic activation of the four metalloporphyrins were in the sequence: CIFeTMP > ClMnTMP > Mn(TDCPP)Cl > Mn(TDFPP)Cl = ZnTMP. The order for reactivity of the free base ligands was H₂TMP > H₂TPP > H₂TPFPP, showing that electron donation to the porphyrin rings facilitates the conversion of

Entry	Catalyst	Yield of benzil (%)
1	H ₂ TMP	90
2	H ₂ TPP	55
3	H ₂ TPFPP	Trace
4	ClFeTMP	87
5	ClFeTPP	22
6	ClFeTPFPP	23
7	ClMnTMP	60
8	Mn(TDCPP)Cl	10
9	Mn(TDFPP)Cl	5
10	Mn(TPFPP)Cl	Trace
11	ZnTMP	Trace
12	-	0

 Table 1
 Effect of porphyrins on the photooxidation of 2-hydroxy-1,2-diphenylethanone to benzil

 1×10^{-6} mol porphyrins, 1×10^{-3} mol 2-hydroxy-1,2-diphenylethanone after 24 h irradiation, air (1 atm) and fluorescent circular lamp, in the CH₃CN solvent

2-hydroxy-1,2-diphenylethanone in our reaction condition. Safari and et al. reported oxidations of alcohols with paramagnetic metals and free base ligands in high yields (Fe and Mn) [95, 96].

In order to obtain the best conditions, various solvents were used for the aerobic oxidation of 2-hydroxy-1,2-diphenylethanone, and the results are summarized in Table 2. Acetonitrile is a good solvent for oxidation reactions, since it is relatively inert toward oxidation, and its tendency toward coordination and interaction with coordination compound is low. In addition, acetonitrile is usually polar enough to dissolve the substrates, products, and the catalyst. For the *m*-THPC (5,10,15,20)tetra(*m*-hydroxyphenyl)chlorin) sensitizer, the singlet oxygen lifetime in DMSO is 19 µs compared to 65 µs in CH₃CN [97]. According to the literature, DMSO, H₂O, CH₃OH, C₂H₅OH and DMF are singlet oxygen quenchers [98–100]. In addition, it is confirmed that the lifetime of ${}^{1}O_{2}$ in acetonitrile is high. The main mechanism which takes place in our reaction conditions may be the generation of singlet oxygens and their reaction with the substrates. Further evidence for a ${}^{1}O_{2}$ mechanism was obtained by performing the photooxygenation in the presence of N_3^- , which is known as a singlet oxygen scavenger [95, 96, 101]. Entry 4 in Table 2 shows that the yield of free base porphyrin was considerably reduced under these conditions. In the presence of N₃⁻, degradation of the porphyrin sensitizers was also inhibited.

The effect of light sources on the aerobic oxidation of 2-hydroxy-1,2diphenylethanone to benzil catalyzed by H_2 TMP and CIFeTMP was investigated As shown in Table 3, it seems that the conversion of 2-hydroxy-1,2-diphenylethanone was closely related with sunlight or white light, However, the reaction rate is considerably increased with the UV light.

It occurred to us that this reaction might proceed under solar irradiation because the spectral distribution curves of a fluorescent lamp and visible light were similar

Entry	Solvent	Yield (%)	
		H ₂ TMP	ClFeTMP
1	Acetonitrile	90	87
2	Dimethyl formamide	Trace	Trace
3	Dimethyl sulfoxide	Trace	Trace
4	NaN ₃ /Na ₂ SO ₃ /acetonitrile	_	85
5	H ₂ O	Trace	Trace
6	CH ₃ OH	Trace	Trace
7	C ₂ H ₅ OH	Trace	Trace

 Table 2 Effect of solvent on the photooxidation of 2-hydroxy-1,2-diphenylethanone to benzil

 1×10^{-6} mol porphyrins, 1×10^{-3} mol 2-hydroxy-1,2-diphenylethanone after 24 h irradiation

Table 3 Effect of light on the photooxidation of 2-hydroxy-1,2-diphenylethanone

Entry	Source	Time (h)	Yield for H_2TMP (%)	Yield for ClFeTMP (%)
1	White light	24	90	87
2	Sunlight	20	90	87

 1×10^{-6} mol porphyrins, 1.0×10^{-3} mol 2-hydroxy-1,2-diphenylethanone

to that of sunlight. Furthermore, in accordance with the concept of "green chemistry", solar radiation is an infinite source of clean energy. In continuation, we checked the generality of the method, in which a variety of benzoins were oxidized to benzil compounds with H_2 TMP and CIFeTMP in moderate to excellent yields at room temperature with sunlight irradiation. The reactions were performed in a tube without any particular precautions. As shown in Table 4, this catalytic system was applicable to a wide range of benzoin substrates.

A possible mechanism for the formation of products with H₂TMP and ClFeTMP porphyrin is shown in Scheme 2. Thus, in the presence of H₂TMP formation singlet oxygen, there may be a new photochemical pathway that involves the overall insertion of molecular oxygen into the C–H bond of the alcohols 1 to form benzoins 2. Furthermore, independent photolysis of 2-hydroperoxy-2-hydroxy-1,2-diphenyl-ethanone 2 in CH₃CN results in the formation of 3, which is the only product [95, 96, 102]. Compound 3 decomposes further to the final product 4 and hydrogen peroxide which is a by-product. In the presence of ClFeTMP as a catalyst and oxygen, formation of intermediate 5 from photo-homolysis of 5 was formed through the reaction of Fe(II)TMP. The existance of Iron (II) comes from the homolysis of ClFeTMP [80, 95, 96, 103]. Iron(IV)–oxo intermediates activate alcohols exclusively by H-atom abstraction from the R-CH group of alcohol and result in the formation of 7. Formation of 4 possibly occurred by a dual hydrogen abstraction mechanism as previously proposed [95, 96, 103–105]. Safari et al. have proven these mechanisms [95, 96].

Table 4	Oxidation of benzoins to be	enzils in the presence of H ₂ TM	AP and CIFeT.	MP under visible	e light irradia	ution or sunlight			
Entry	Benzoin	Benzil	Time (h)	Yield (%)				Mp °C	
				$\mathrm{H}_{2}\mathrm{TMP}^{\mathrm{a}}$		CIFeTMP ^b		Found	Reported[97]
				Visible light	Sunlight	Visible light	Sunlight		
-	e P		24	06	16	87	89	95-96	9495
0	e C		24	89	06	85	85	103–104	103–105
б	Meo	MeO	24	90	16	87	85	82	82–83
4	e P P		24	82	83	80	83	195–196	195–198
Ś	o P H H H H H H H H H H H H H H H H H H	B Br	24	85	89	82	85	224-226	224-226

Table 4	t continued								
Entry	Benzoin	Benzil	Time (h)	Yield (%)				Mp °C	
				H ₂ TMP ^a		CIFeTMP ^b		Found	Reported[97]
				Visible light	Sunlight	Visible light	Sunlight		
9	0 5 5 7		24	75	75	70	71	156–158	156–157
a 10	10-6 mil II TMB and 1.0	10-3 mol hourseles as made	ates of 1 ates	and functions (+ aircolor los	the cumulant			

D Springer

 1.0×10^{-6} mol H₂TMP and 1.0×10^{-3} mol benzoins as substrates, air (1 atm) and fluorescent circular lamp or sunlight

 $^{\rm b}$ 1.0 × 10⁻⁶ mol CIFeTMP and 1.0 × 10⁻³ mol benzoins as substrates, air (1 atm) and fluorescent circular lamp or sunlight

Scheme 2 Proposed mechanism

Conclusion

We have developed a very simple and efficient aerobic photooxidation oxidation reaction for the conversion of benzoins to benzils using a catalytic amount of a nonmetallated and metallated porphyrins in the presence of visible light irradiation of a fluorescent lamp or sunlight and air in CH_3CN . This novel method is thought to be convenient, green in view of the use of the catalyst, and environmentally friendly. This method is of great value from the perspectives green chemistry and organic synthesis due to its use of inexpensive and harmless visible light irradiated from a general purpose fluorescent lamp or sunlight, and molecular oxygen as terminal oxidant. Further application of this photooxidation to other reactions is now in progress in our laboratory.

Acknowledgment We gratefully acknowledge financial support from the Research Council of Islamic Azad University of Karaj.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

- 1. K.C. Nicolaou, D.L.F. Gray, J. Tae, J. Am. Chem. Soc. 126, 613 (2004)
- 2. M.R. Angelstro, S. Mehdi, J.P. Burkhart, N.P. Peet, P. Bey, J. Med. Chem. 33, 11 (1990)
- 3. E.S. Krongauz, Russ. Chem. Rev. 46, 59 (1977)
- 4. E.J. Corey, D.H. Lee, S. Sarshar, Tetrahedron Asymmetry 6, 3 (1995)
- A. Ryoda, N. Yajima, T. Haga, T. Kumamoto, W. Nakanishi, M. Kawahata, K. Yamaguchi, T. Ishikawa, J. Org. Chem. 73, 133 (2008)
- 6. L.R. Hillis, R.C. Ronald, J. Org. Chem. 50, 470 (1985)
- 7. D.H.S. Yu, J.M. Torkelson, Macromolecules 21, 852 (1988)
- F. Catalina, C. Peinado, M. Blanco, A. Alonso, N.S.J. Allen, Photochem. Photobiol. A 131, 141 (2000)
- P.K. Roy, P. Surekha, C. Rajagopal, S.N. Chatterjee, V. Choudhary, Polym. Degrad. Stab. 90, 577 (2005)
- Z. Szablan, T.M. Lovestead, T.P. Davis, M.H. Stenzel, C. Barner-Kowollik, Macromolecules 40, 26 (2007)
- 11. M. Friedman, J. Org. Chem. 30, 859 (1965)
- K.M. Kadish, E. Van Caemelbecke, F. DSouza, M. Lin, D.J. Nurco, C.J. Medforth, T.P. Forsyth, B. Krattinger, K.M. Smith, S. Fukuzumi, I. Nakanishi, J. Shelnutt, A. Inorg. Chem. 38, 2188 (1999)
- 13. G. Du, G.A. Mirafzal, L.K. Woo, Organometallics 23, 4230 (2004)
- 14. A.S. Kiselyov, Tetrahedron Lett. 36, 493 (1995)
- 15. M.H. Nantz, D.A. Lee, D.M. Bender, A.H. Roohi, J. Org. Chem. 57, 6653 (1992)
- 16. E.C. Taylor, J.E.L.G. Macor, J. French, Org. Chem. 56, 1807 (1991)
- 17. I. Flament, M. Stoll, Helv. Chim. Acta 50, 1754 (1967)
- 18. T.E. Barta, M.A. Stealey, P.W. Collins, R.M. Weier, Bioorg. Med. Chem. Lett. 8, 3443 (1998)
- Z. Zhao, D.D. Wisnoski, S.E. Wolkenberg, W.H. Leister, Y. Wang, C.W. Lindsley, Tetrahedron Lett. 45, 4873 (2004)
- 20. I. Held, S.J. Xu, H. Zipse, Synthesis 8, 1185 (2007)
- 21. F. Rong, S. Chow, S. Yan, G. Larson, Z. Hong, Wu, J. Bioorg. Med. Chem. Lett. 17, 1663 (2007)
- 22. W.G. Dauben, K.L. Lorenz, D.W. Dean, G. Shapiro, I. Farkas, Tetrahedron Lett. 39, 7079 (1998)
- 23. S. Danishefsky, R. Zamboni, M. Kahn, S.J. Etheredge, J. Am. Chem. Soc. 103, 3460 (1981)
- 24. J.L. Hyatt, V. Stacy, R.M. Wadkins, K.J.P. Yoon, M. Wierdl, C.C. Edwards, M. Zeller, A.D. Hunter, M.K. Danks, G. Crundwell, P.M. Potter, J. Med. Chem. 48, 5543 (2005)
- 25. B.I. Ita, O.E. Offiong, Mater. Chem. Phys. 70, 330 (2001)
- 26. M.R. Ams, C.S. Wilcox, J. Am. Chem. Soc. 129, 3966 (2007)
- 27. N. Zinin, Ann. Chem. Pharm. 34, 186 (1840)
- 28. M. Weiss, M. Appel, J. Am. Chem. Soc. 70, 3666 (1948)
- 29. A. McKillop, B.P. Swann, M.E. Ford, E.C. Taylor, J. Am. Chem. Soc. 95, 3641 (1973)
- 30. S. Ranganathan, D. Ranganathan, P.V. Ramachandran, Tetrahedron 40, 3145 (1984)
- 31. M. Hirano, M. Oose, T. Morimoto, Bull. Chem. Soc. Jpn. 64, 1046 (1991)
- 32. S.A. Tymonko, B.A. Nattier, R.S. Mohan, Tetrahedron Lett. 40, 7657 (1999)
- 33. V.V. Namboodiri, V. Polshettiwar, R.S. Varma, Tetrahedron Lett. 48, 8839 (2007)
- 34. C.T. Shei, H.L. Chien, K. Sung, Synlett 7, 1021 (2008)
- 35. C. Joo, S. Kang, S.M. Kim, H. Han, J.W. Yang, Tetrahedron Lett. 51, 6006 (2010)
- 36. G. Du, L.K. Woo, J. Porphyrins Phthalocyanines 9, 206 (2005)
- 37. S.L. Jain, V.B. Sharma, B. Sain, Tetrahedron Lett. 45, 1233 (2004)
- 38. J.M. Khurana, B.M. Kandpal, Tetrahedron Lett. 44, 4909 (2003)
- 39. J.N. Moorthy, N. Singhal, K. Senapati, Tetrahedron Lett. 47, 1757 (2006)
- 40. R. Zibuck, D. Seebach, Helv. Chim. Acta 71, 237 (1988)
- 41. H. Gopal, A.J. Gordon, Tetrahedron Lett. 12, 2941 (1971)
- 42. D.G. Lee, V.S. Chang, J. Org. Chem. 44, 2726 (1979)
- 43. S. Wolfe, W.R. Pilgrim, T.F. Garrard, P. Chamberlain, Can. J. Chem. 49, 1099 (1971)
- 44. A. McKillop, O.H. Oldenziel, B.P. Swann, E.C. Taylor, R.L. Robey, J. Am. Chem. Soc. 95, 1296 (1973)
- 45. W. Ren, Y. Xia, S. Ji, Y. Zhang, X. Wan, J. Zhao, Org. Lett. 11, 1841 (2009)
- 46. K. J. Tan, U. Wille, Chem. Commun. 6239 (2008)
- 47. M. Niu, H. Fu, Y. Jiang, Y. Zhao, Synthesis 18, 2879 (2008)

- 48. S. Dayan, I. Ben-David, S. Rozen, J. Org. Chem. 65, 8816 (2000)
- 49. Y. Sawaki, H. Inoue, Y. Ogata, Bull. Chem. Soc. Jpn. 56, 1133 (1983)
- 50. Yusubov, V.D. Filimonov, V.P. Vasilyeva, Synthesis 10, 1234 (1995)
- 51. N. Rabjohn, Org. React. 24, 261 (1976)
- 52. C.L. Chang, M.P. Kumar, R.S. Liu, J. Org. Chem. 69, 2793 (2004)
- 53. T.B. Rao, J.M. Rao, Synth. Commun. 23, 1527 (1993)
- 54. K. Suda, K. Baba, S. Nakajima, T. Takanami, Chem. Commun. 2570 (2002)
- 55. F.A. Khan, B. Prabhudas, J. Dash, N. Sahu, J. Am. Chem. Soc. 122, 9558 (2000)
- 56. S. Antoniotti, E. Dunach, Chem. Commun. 2566 (2001)
- 57. J.S. Yadav, S.K. Biswas, R. Srinivas, Synthesis 24, 4237 (2006)
- 58. M. Kirihara, Y. Ochiai, S. Takizawa, H. Takahata, H. Nemoto, Chem. Commun. 1387 (1999)
- B.M. Choudary, M.L. Kantam, A. Rahman, C.V. Reddy, K.K. Rao, Angew. Chem. Int. Ed. 40, 763 (2001)
- 60. S.K. Alamsetti, P. Muthupandi, G. Sekar, Chem. Eur. J. 15, 5424 (2009)
- C. Qin, J. Chen, H. Wu, J. Cheng, Q. Zhang, B. Zuo, W. Su, J. Ding, Tetrahedron Lett. 49, 1884 (2008)
- 62. W. Zhang, M. Liu, H. Wu, J. Ding, J. Cheng, Tetrahedron Lett. 49, 5336 (2008)
- Q. Zhang, C.M. Xu, J.X. Chen, X.-L. Xu, J.C. Ding, H.Y. Wu, Appl. Organomet. Chem. 23, 524 (2009)
- 64. G.J. Abhilash, J. Bhuyan, P. Singh, S. Maji, K. Pal, S. Sarkar, Inorg. Chem. 48, 1790 (2009)
- 65. G.J. Abhilash, J. Bhuyan, P. Singh, S. Maji, K. Pal, S. Sarkar, Inorg. Chem. 48, 1790 (2009)
- 66. M. Haranaka, A. Hara, W. Ando, T. Akasaka, Tetrahedron Lett. 50, 3585 (2009)
- 67. G. Huang, S.Y. Liu, Y.A. Guo, A. Wang, J. Luo, C.C. Cai, Appl. Catal. A 350, 173 (2009)
- M. Moghadam, V. Mirkhani, S. Tangestaninejad, I. Mohammadpoor-Baltork, H. kargar, Molecular Catalysis A 288, 116 (2008)
- M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork, A.A. Abbasi-Larki, Applied Catalysis A 349, 177 (2008)
- 70. A.R. Han, Y.J. Jeong, Y. Kang, J.Y. Lee, M.S. Seo, W. Nam, Chem. Commun. 9, 1076 (2008)
- 71. J.E.L. Ellis, Coord. Chem. Rev. 105, 181 (1990)
- 72. A. Maldotti, C. Bartocci, G. Varani, A. Molinari, Inorg. Chem. 35, 1126 (1996)
- 73. H.R. Khavasi, N. Safari, J. Mol. Catal. A. 220, 127 (2004)
- 74. V.N. Korotchenko, K. Severin, M.R. Gagn, Org. Biomol. Chem. 6, 1961 (2008)
- 75. M.C. Derosa, R.J. Crutchley, Coord. Chem. Rev. 351, 233 (2002)
- 76. A. Greer, Acc. Chem. Res. 39, 797 (2006)
- 77. M. Hajimohammadi, F. Bahadoran, S.S.H. Davarani, N. Safari, React. Kinet. Mech. Catal. 99, 243 (2010)
- 78. R.W. Redmond, J.N. Gamlin, Photochem. Photobiol. 70, 391 (1999)
- 79. R. Bonnett, Chem. Soc. Rev. 24, 19 (1995)
- 80. L. Weber, R. Hommel, J. Behling, G. Haufe, H. Hennig, J. Am. Chem. Soc. 116, 2400 (1994)
- R.K. Pandey, G. Zheng, in *The Porphyrin Handbook*, ed. by K.M. Kadish, K.M. Smith, R. Guilard (Academic Press, New York, 2000), p. 157
- S.K. Pushpan, S. Venkatraman, V.G. Anand, J. Sankar, D. Parmeswaran, S. Ganesan, T.K. Chandrashekar, Curr. Med. Chem. Anticancer Agents. 2, 187 (2002)
- 83. E.S. Nyman, P.H. Hynninen, J. Photochem. Photobiol. B 73, 1 (2004)
- 84. J.S. Lindsey, R.W. Wagner, J. Org. Chem. 54, 828 (1989)
- 85. J. Adler, Inorg. Nucl. Chem. 32, 2443 (1970)
- 86. B. Boens, P.A. Faugeras, J. Vergnaud, R. Lucas, K. Teste, R. Zerrouki, Tetrahedron 66, 1994 (2010)
- 87. P. Singh, A. Mittal, S. Kumar, Bioorg. Med. Chem. 15, 3990 (2007)
- P. Hoyos, G. Sansottera, M. Fernández, F. Molinari, J.V. Sinisterra, A.R. Alcantara, Tetrahedron 64, 7929 (2008)
- 89. Y. Shimakawa, T. Morikawa, S. Sakaguchi, Tetrahedron Lett. 51, 1786 (2010)
- 90. T. Kashiwabara, M. Tanaka, J. Org. Chem. 74, 3958 (2009)
- 91. A. Giraud, O. Provot, J. Franç, O. Peyrat, M. Alami, J.D. Brion, Tetrahedron 62, 7667 (2006)
- 92. Y. Shimakawa, T. Morikawa, S. Sakaguchi, Tetrahedron Lett. 51, 1786 (2010)
- 93. C. Joo, S. Kang, S.M. Kim, H. Han, J.W. Yang, Tetrahedron Lett. 51, 6006 (2010)
- 94. J.M. Khurana, B.M. Kandpal, Tetrahedron Lett. 44, 4909 (2003)
- 95. M. Hajimohammadi, N. Safari, H. Mofakham, F. Deyhimi, Green Chem. 13, 991 (2011)
- 96. M. Hajimohammadi, N. Safari, H. Mofakham, A. Shaabani, Tetrahedron Lett. 51, 4061 (2010)

- 97. Y. Chen, S. Xu, L. Li, M. Zhang, J. Shen, T. Shen, Dye. Pigment. 51, 63 (2001)
- I. Kruk, A.E. Hassan, T. Michalska, K. Ichszteld, K. Kubasik-Kladna, S. Olgen, Luminescence 22, 379 (2007)
- 99. A. Ogunsipe, J.Y. Chen, T. Nyokong, New J. Chem. 28, 822 (2004)
- 100. S. He, L. Jiang, B. Wu, Y. Pan, C. Sun, Biochem. Biophys. Res. Commun. 379, 283 (2009)
- 101. J.R. Harbour, S.L. Issler, J. Am. Chem. Soc. 104, 903 (1982)
- 102. P. Wan, S. Muralidharaina, I. Cauley, C.A. Babbage, Can. J. Chem. 65, 1775 (1987)
- 103. W. Nam, Acc. Chem. Res. 40, 522 (2007)
- 104. Y.-M. Lee, S. Hong, Y. Morimoto, W. Shin, S. Fukuzumi, W.J. Nam, Am. Chem. Soc. 132, 10668 (2010)
- 105. N.Y. Oh, Y. Suh, M.J. Park, M.S. Seo, J. Kim, W. Nam, Angew. Chem. Int. Ed. 117, 4307 (2005)