37 research outputs found

    Imaging spontaneous currents in superconducting arrays of pi-junctions

    Full text link
    Superconductors separated by a thin tunneling barrier exhibit the Josephson effect that allows charge transport at zero voltage, typically with no phase shift between the superconductors in the lowest energy state. Recently, Josephson junctions with ground state phase shifts of pi proposed by theory three decades ago have been demonstrated. In superconducting loops, pi-junctions cause spontaneous circulation of persistent currents in zero magnetic field, analogous to spin-1/2 systems. Here we image the spontaneous zero-field currents in superconducting networks of temperature-controlled pi-junctions with weakly ferromagnetic barriers using a scanning SQUID microscope. We find an onset of spontaneous supercurrents at the 0-pi transition temperature of the junctions Tpi = 3 K. We image the currents in non-uniformly frustrated arrays consisting of cells with even and odd numbers of pi-junctions. Such arrays are attractive model systems for studying the exotic phases of the 2D XY-model and achieving scalable adiabatic quantum computers.Comment: Pre-referee version. Accepted to Nature Physic

    RISCI - Repeat Induced Sequence Changes Identifier: a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify repeat induced sequence changes in closely related genomes

    Get PDF
    <p>Abstract</p> <p>Background -</p> <p>The availability of multiple whole genome sequences has facilitated <it>in silico </it>identification of fixed and polymorphic transposable elements (TE). Whereas polymorphic loci serve as makers for phylogenetic and forensic analysis, fixed species-specific transposon insertions, when compared to orthologous loci in other closely related species, may give insights into their evolutionary significance. Besides, TE insertions are not isolated events and are frequently associated with subtle sequence changes concurrent with insertion or post insertion. These include duplication of target site, 3' and 5' flank transduction, deletion of the target locus, 5' truncation or partial deletion and inversion of the transposon, and post insertion changes like inter or intra element recombination, disruption etc. Although such changes have been studied independently, no automated platform to identify differential transposon insertions and the associated array of sequence changes in genomes of the same or closely related species is available till date. To this end, we have designed RISCI - 'Repeat Induced Sequence Changes Identifier' - a comprehensive, comparative genomics-based, <it>in silico </it>subtractive hybridization pipeline to identify differential transposon insertions and associated sequence changes using specific alignment signatures, which may then be examined for their downstream effects.</p> <p>Results -</p> <p>We showcase the utility of RISCI by comparing full length and truncated L1HS and AluYa5 retrotransposons in the reference human genome with the chimpanzee genome and the alternate human assemblies (Celera and HuRef). Comparison of the reference human genome with alternate human assemblies using RISCI predicts 14 novel polymorphisms in full length L1HS, 24 in truncated L1HS and 140 novel polymorphisms in AluYa5 insertions, besides several insertion and post insertion changes. We present comparison with two previous studies to show that RISCI predictions are broadly in agreement with earlier reports. We also demonstrate its versatility by comparing various strains of <it>Mycobacterium tuberculosis </it>for IS 6100 insertion polymorphism.</p> <p>Conclusions -</p> <p>RISCI combines comparative genomics with subtractive hybridization, inferring changes only when exclusive to one of the two genomes being compared. The pipeline is generic and may be applied to most transposons and to any two or more genomes sharing high sequence similarity. Such comparisons, when performed on a larger scale, may pull out a few critical events, which may have seeded the divergence between the two species under comparison.</p

    Superconducting spintronics

    Get PDF
    The interaction between superconducting and spin-polarized orders has recently emerged as a major research field following a series of fundamental breakthroughs in charge transport in superconductor-ferromagnet heterodevices which promise new device functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic orders turns out to be possible through the creation of spin-triplet Cooper pairs which are generated at carefully engineered superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials combinations which merge superconductivity and spintronics in order to enhance device functionality and performance. The results look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook for upcoming challenges related to the new concept of superconducting spintronics.J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700. J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an International Network Grant (IN-2013-033).This is the accepted manuscript. The final version is available at http://www.nature.com/nphys/journal/v11/n4/full/nphys3242.html

    Pt and CoB trilayer Josephson π junctions with perpendicular magnetic anisotropy

    Get PDF
    We report on the electrical transport properties of Nb based Josephson junctions with Pt/Co68B32/Pt ferromagnetic barriers. The barriers exhibit perpendicular magnetic anisotropy, which has the main advantage for potential applications over magnetisation in-plane systems of not affecting the Fraunhofer response of the junction. In addition, we report that there is no magnetic dead layer at the Pt/Co68B32 interfaces, allowing us to study barriers with ultra-thin Co68B32. In the junctions, we observe that the magnitude of the critical current oscillates with increasing thickness of the Co68B32 strong ferromagnetic alloy layer. The oscillations are attributed to the ground state phase difference across the junctions being modified from zero to π. The multiple oscillations in the thickness range 0.2 ⩽ dCoB ⩽ 1.4 nm suggests that we have access to the first zero-π and π-zero phase transitions. Our results fuel the development of low-temperature memory devices based on ferromagnetic Josephson junctions

    Remotely induced magnetism in a normal metal using a superconducting spin-valve

    Get PDF
    Superconducting spintronics has emerged in the past decade as a promising new field that seeks to open a new dimension for nanoelectronics by utilizing the internal spin structure of the superconducting Cooper pair as a new degree of freedom1, 2. Its basic building blocks are spin-triplet Cooper pairs with equally aligned spins, which are promoted by proximity of a conventional superconductor to a ferromagnetic material with inhomogeneous macroscopic magnetization3. Using low-energy muon spin-rotation experiments we find an unanticipated effect, in contradiction with the existing theoretical models of superconductivity and ferromagnetism: the appearance of a magnetization in a thin layer of a non-magnetic metal (gold), separated from a ferromagnetic double layer by a 50-nm-thick superconducting layer of Nb. The effect can be controlled either by temperature or by using a magnetic field to control the state of the remote ferromagnetic elements, and may act as a basic building block for a new generation of quantum interference devices based on the spin of a Cooper pair

    Four-Wave Spectroscopy of Shallow Donors in Germanium

    No full text

    Stimulation of a Singlet Superconductivity in SFS Weak Links by Spin-Exchange Scattering of Cooper Pairs

    No full text
    Josephson junctions with a ferromagnetic metal weak link reveal a very strong decrease of the critical current compared to a normal metal weak link. We demonstrate that in the ballistic regime the presence of a small region with a non-collinear magnetization near the center of a ferromagnetic weak link restores the critical current inherent to the normal metal. The above effect can be stimulated by additional electrical bias of the magnetic gate which induces a local electron depletion of ferromagnetic barrier. The underlying physics of the effect is the interference phenomena due to the magnetic scattering of the Cooper pair, which reverses its total momentum in the ferromagnet and thus compensates the phase gain before and after the spin-reversed scattering. In contrast with the widely discussed triplet long ranged proximity effect we elucidate a new singlet long ranged proximity effect. This phenomenon opens a way to easily control the properties of SFS junctions and inversely to manipulate the magnetic moment via the Josephson current.Etats de Majorana et d'Andreev dans des circuits hybrides combinant des matériaux magnétiques et supraconducteursNew Century of Superconductivity: Ideas, Materials, Technologie
    corecore